【BZOJ2820】YY的GCD

Description

神犇YY虐完数论后给傻×kAc出了一题

给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对

kAc这种傻×必然不会了,于是向你来请教……

多组输入

Input

第一行一个整数T 表述数据组数

接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2

10 10

100 100

Sample Output

30

2791

不妨设\(n<m\)

答案为\(\displaystyle\sum_{g为质数}\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{g} \rfloor}[gcd(i,j)==1]\)

根据套路 ,后面的\([gcd(i,j)==1]可以写成\displaystyle \sum_{d|i,d|j}\mu(d)\)

和式变换一下:\(\displaystyle \sum_{g为质数}\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor}\mu(d)\lfloor \frac{n}{gd} \rfloor\lfloor \frac{m}{gd} \rfloor\)

根据套路:设\(T=gd,则\displaystyle\sum_{T=1}^{n}\sum_{d|T且\frac{n}{d}为质数}\mu(d)\lfloor \frac{n}{gd} \rfloor\lfloor \frac{m}{gd} \rfloor\)

又是套路:对于后面两个除法,我们数论分块就可以了。对于\(\sum_{d|T且\frac{n}{d}为质数}\mu(d)\)我们可以预处理出前缀和。

代码:

#include<bits/stdc++.h>
#define N 10000005
#define ll long long
using namespace std; int T;
int pri[700000];
ll mu[N],sum[N];
bool vis[N]; void pre() {
mu[1]=1;
for(int i=2;i<=10000000;i++) {
if(!vis[i]) pri[++pri[0]]=i,mu[i]=-1;
for(int j=1;j<=pri[0]&&i*pri[j]<=10000000;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(ll i=1;i<=pri[0];i++) {
for(ll j=1;j*pri[i]<=10000000;j++) {
sum[j*pri[i]]+=mu[j];
}
}
for(ll i=1;i<=10000000;i++) sum[i]+=sum[i-1];
} ll n,m;
int main() {
pre();
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&m);
if(n>m) swap(n,m);
ll last,ans=0;
for(ll i=1;i<=n;i=last+1) {
last=min(n/(n/i),m/(m/i));
ans+=(sum[last]-sum[i-1])*(n/i)*(m/i);
}
cout<<ans<<'\n';
}
return 0;
}

【BZOJ2820】YY的GCD的更多相关文章

  1. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  2. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  6. 【莫比乌斯反演】BZOJ2820 YY的GCD

    Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...

  7. BZOJ2820: YY的GCD(反演)

    题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...

  8. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  9. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  10. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

随机推荐

  1. 微服务学习二:springboot与swagger2的集成

    现在测试都提倡自动化测试,那我们作为后台的开发人员,也得进步下啊,以前用postman来测试后台接口,那个麻烦啊,一个字母输错就导致测试失败,现在swagger的出现可谓是拯救了这些开发人员,便捷之处 ...

  2. Extjs 项目中常用的小技巧,也许你用得着(2)

    接着来,也是刚刚遇到的 panel怎么进行收缩 collapsible: true, 这会panel就会出现这个 点这个就可以收缩了 panel怎么随便拉伸,也就是让那个小黑三角出现 split: t ...

  3. MVC基础篇—控制器与视图数据的传递

    Viewdata,Viewbag,Tempdata 1  Vewdata:简单来说就是数据字典,通过键值对的形式来存放数据.举例如下: //后台控制器代码: public ActionResult V ...

  4. Spark集群的任务提交执行流程

    本文转自:https://www.linuxidc.com/Linux/2018-02/150886.htm 一.Spark on Standalone 1.spark集群启动后,Worker向Mas ...

  5. 关于Unsupported major.minor version 52.0解决办法(再次回顾)

    对于web项目的配置问题,在很大程度上,tomcat的版本问题起到很大的决定性因素,例如以上问题:Unsupported major.minor version 52.0 表示stanford par ...

  6. 详解promise、async和await的执行顺序

    1.题目和答案 一道题题目:下面这段promise.async和await代码,请问控制台打印的顺序? async function async1(){ console.log('async1 sta ...

  7. array.js

    // “最后加” concat 连接两个或更多的数组,并返回结果. var a = ['a','b','c']; var b = ['x','y','z']; var c = a.concat(b,t ...

  8. BUGList

    Django : a. MySQL数据表还未创建时,不可在视图内直接使用模型类对象,产生报错 django.db.utils.ProgrammingError: (1146, "Table ...

  9. 微信小程序 数组索引 data-“”解释

    按照官方最新文档循环的方式,索引值是以  wx:for-index="index" 方式写的, 以   parseInt(event.currentTarget.dataset.i ...

  10. 【读书笔记】iOS-Web应用程序的自动化测试

    seleniumHQ:https://github.com/seleniumhq/selenium Appium:https://github.com/appium/appium 参考资料:<i ...