课本:第3章 MenuOS的构造 内容总结

  • 计算机的“三大法宝”

    • 存储程序计算机
    • 函数调用堆栈
    • 中断
  • 操作系统的“两把宝剑”
    • 中断上下文切换:保存现场和恢复现场
    • 进程上下文切换

      在接触linux内核源代码时,linux是基于一个稳定版的内核Linux-3.18.6。其内核源码的目录结构如下:



      其中,arch目录是与体系结构相关的子目录列表,里面存放了许多CPU体系结构的相关代码。arch目录中的代码在linux内核代码中占比相当庞大,主要是因为arch目录中的代码可以使linux内核支持不同的CPU和体系结构。本课程实验是基于x86构架,所以只需要关心x86目录下的内容。

      除了arch目录以外,还有如下几个关键目录:
  • block:存放linux存储体系中关于块设备管理的代码。
  • crypto:存放常见的加密算法的C语言代码。
  • Documentation:存放一些文档。
  • drivers:驱动目录,里面分门别类地存放了linux内核支持的所有硬件设备的驱动源代码。
  • firmware:固件。
  • fs:即file system(文件系统),里面列出了linux支持的各种文件系统的实现。
  • include:头文件目录,存放公共头文件。
  • init:初始化,存放linux内核启动时的初始化代码,其中main.c文件就在这个目录下,这是整个linux内核启动的起点,main.c中的start_kernel函数是初始化linux内核启动的起点。
  • ipc:即inter-process communication(进程间通信),其目录下为linux支持的IPC代码实现。
  • kernel:即linux内核,这个文件夹下存放着内核本身需要的一些核心代码文件。
  • lib:共用的库文件,里面是一些公用的库函数。在内核编程中不能使用C语言的标准库函数,这里的lib目录下的库函数就是来替代那些标准库函数的。
  • mm:即memory management(内存管理),存放linux的内存管理代码。
  • net:该目录下是网络相关的代码,例如TCP/IP协议栈等。
  • 此外还有一些与声音、安全、脚本、工具相关的目录

    了解了内核的基本结构和基本功能,为下面的实验进行打下了基础和铺垫。

实验:跟踪分析Linux内核的启动过程

使用实验楼的shell环境,其已经在虚拟机中搭建好了menuOS,所以我们通过两个简单的命令就可以把linux系统和一个简单的文件系统运行起来:

cd LinuxKernel/
qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img

其中,qemu仿真kernel;bzImage是vmLinux经过gzip压缩后的文件;vmLinux是编译出来的最原始的内核ELF文件;initrd是“initial ramdisk”的缩写,是用来初始化内存根文件系统。根文件系统一般包括内存根文件系统和磁盘文件系统,普通linux用户一般感受不到这个内存根文件系统的存在,因为在普通linux系统在启动时,是boot loader将存储介质中的initrd文件加载到内存,内核启动时先访问initrd文件系统,然后再切换到磁盘文件系统。本次实验简化为只使用了initrd根文件系统,创建了一个rootfs.img,其中只有一个init功能,用menu程序替代init。内核启动完成后进入menu程序。效果如下图所示:



可以看到,menu项目支持3个命令:help、version和quit。

下面,使用gdb跟踪调试内核,输入以下命令:

qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -S # 关于-s和-S选项的说明:
-S freeze CPU at startup (use ’c’ to start execution)
-s shorthand for -gdb tcp::1234 若不想使用1234端口,则可以使用-gdb tcp:xxxx来取代-s选项

效果如下:

水平分割窗口,启动gdb,输入以下命令:

gdb
(gdb)file linux-3.18.6/vmlinux # 在gdb界面中targe remote之前加载符号表
(gdb)target remote:1234 # 建立gdb和gdbserver之间的连接,按c 让qemu上的Linux继续运行
(gdb)break start_kernel # 断点的设置可以在target remote之前,也可以在之后

执行效果如下:



在start_kernel处设置了断点,使用continue命令让程序执行到断点位置,如下图所示:



可以看到在程序执行到start_kernel断点处,qemu窗口中的执行效果。下面再在rest_init处为内核代码增加一个断点,执行效果如下:



代码分析

start_kernel()函数

asmlinkage __visible void __init start_kernel(void)
{
char *command_line;
char *after_dashes; lockdep_init();
set_task_stack_end_magic(&init_task);
smp_setup_processor_id();
debug_objects_early_init();
boot_init_stack_canary();
cgroup_init_early();
local_irq_disable();
early_boot_irqs_disabled = true; /*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
boot_cpu_init();
page_address_init();
pr_notice("%s", linux_banner);
setup_arch(&command_line);
mm_init_cpumask(&init_mm);
setup_command_line(command_line);
setup_nr_cpu_ids();
setup_per_cpu_areas();
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ build_all_zonelists(NULL, NULL);
page_alloc_init(); pr_notice("Kernel command line: %s\n", boot_command_line);
parse_early_param();
after_dashes = parse_args("Booting kernel",
static_command_line, __start___param,
__stop___param - __start___param,
-1, -1, &unknown_bootoption);
if (!IS_ERR_OR_NULL(after_dashes))
parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
set_init_arg); jump_label_init(); /*
* These use large bootmem allocations and must precede
* kmem_cache_init()
*/
setup_log_buf(0);
pidhash_init();
vfs_caches_init_early();
sort_main_extable();
trap_init();
mm_init(); /*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
sched_init();
* Disable preemption - early bootup scheduling is extremely
* fragile until we cpu_idle() for the first time.
*/
preempt_disable();
if (WARN(!irqs_disabled(),
"Interrupts were enabled *very* early, fixing it\n"))
local_irq_disable();
idr_init_cache();
rcu_init();
context_tracking_init();
radix_tree_init();
/*
init some links before init_ISA_irqs()
*/
early_irq_init();
init_IRQ();
tick_init();
rcu_init_nohz();
init_timers();
hrtimers_init();
softirq_init();
timekeeping_init();
time_init();
sched_clock_postinit();
perf_event_init();
profile_init();
call_function_init();
WARN(!irqs_disabled(), "Interrupts were enabled early\n");
early_boot_irqs_disabled = false;
local_irq_enable(); kmem_cache_init_late(); /*
* HACK ALERT! This is early. We're enabling the console before
* we've done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/
console_init();
if (panic_later)
panic("Too many boot %s vars at `%s'", panic_later,
panic_param); lockdep_info(); /*
* Need to run this when irqs are enabled, because it wants
* to self-test [hard/soft]-irqs on/off lock inversion bugs
* too:
*/
locking_selftest(); #ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start && !initrd_below_start_ok &&
page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
page_to_pfn(virt_to_page((void *)initrd_start)),
min_low_pfn);
initrd_start = 0;
}
#endif
page_cgroup_init();
debug_objects_mem_init();
kmemleak_init();
setup_per_cpu_pageset();
numa_policy_init();
if (late_time_init)
late_time_init();
sched_clock_init();
calibrate_delay();
pidmap_init();
anon_vma_init();
acpi_early_init();
#ifdef CONFIG_X86 /*与x86硬件相关代码 如果主板支持EFI的话*/
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
/* Should be run before the first non-init thread is created */
init_espfix_bsp();
#endif
thread_info_cache_init();
cred_init();
fork_init(totalram_pages);
proc_caches_init();
buffer_init();
key_init();
security_init();
dbg_late_init();
vfs_caches_init(totalram_pages);
signals_init();
/* rootfs populating might need page-writeback */
page_writeback_init();
proc_root_init();
cgroup_init();
cpuset_init();
taskstats_init_early();
delayacct_init(); check_bugs(); sfi_init_late(); if (efi_enabled(EFI_RUNTIME_SERVICES)) {
efi_late_init();
efi_free_boot_services();
} ftrace_init(); /* Do the rest non-__init'ed, we're now alive */
rest_init();
}

start_kernel()函数分析

start_kernel()函数的作用是内核中各种模块的初始化。其中,start_kernel()函数中set_task_stack_end_magic(&init_task)中的init_task即初始化手工创建的PCB,0号进程即最终的idle进程,idle进程由系统自动创建, 运行在内核态。当系统没有需要执行的进程时就调度到idle进程。

rest_init()函数

static noinline void __init_refok rest_init(void)
{
int pid; rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done); /*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current); /*idle初始化*/
schedule_preempt_disabled();
/* Call into cpu_idle with preempt disabled */
cpu_startup_entry(CPUHP_ONLINE);
}

rest_init()函数分析

通过rest_init()函数新建kernel_init和kthreadd进程,分别为系统的1号进程和2号进程。系统的进程创建遵从“道生一,一生二,二生三,三生万物”的思想,0号进程创建1号进程,创建2号进程,以此类推,层层推进。

总结

start_kernel()函数为内核启动的起点,执行了各种初始化操作,对于本次实验的进行来说,除了实验楼的虚拟机环境偶尔出现了一些小问题,其他方面实验进行的还是比较顺利的,没有遇到什么问题。但是对于内核启动过程的理解还是比较困难的,start_kernel()的各个模块做了非常繁杂的初始化操作,内核得以正常启动。

本次实验结合《庖丁解牛》和对应的实验楼实验以及视频教程配合完成,对于linux内核源码文件的目录结构、作用以及内核启动及初始化的过程有了一个初步的整体了解,但对于其细致的过程还不太明白,内核的启动过程十分复杂。希望在今后的实验过程中,通过一系列实验,对linux内核的工作慢慢有更深一步的认识和理解。

因为本次实验过程中自己电脑的linux虚拟环境出现了一些问题不能正常启动,所以此次实验完全在已经配置好了的实验楼环境中进行,在后面会在自己电脑的环境中再完整的配置一遍内核的启动过程。

《Linux内核原理与分析》第四周作业的更多相关文章

  1. 2019-2020-1 20199303<Linux内核原理与分析>第二周作业

    2019-2020-1 20199303第二周作业 1.汇编与寄存器的学习 寄存器是中央处理器内的组成部份.寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令.数据和位址.在中央处理器的控制部件中 ...

  2. 20169219 linux内核原理与分析第二周作业

    "linux内核分析"的第一讲主要讲了计算机的体系结构,和各寄存器之间对数据的处理过程. 通用寄存器 AX:累加器 BX:基地址寄存器 CX:计数寄存器 DX:数据寄存器 BP:堆 ...

  3. 2019-2020-1 20199314 <Linux内核原理与分析>第二周作业

    1.基础学习内容 1.1 冯诺依曼体系结构 计算机由控制器.运算器.存储器.输入设备.输出设备五部分组成. 1.1.1 冯诺依曼计算机特点 (1)采用存储程序方式,指令和数据不加区别混合存储在同一个存 ...

  4. 20169219linux 内核原理与分析第四周作业

    系统调用 系统调用是用户空间访问内核的唯一手段:除异常和陷入外,它们是内核唯一的合法入口. 一般情况下,应用程序通过在用户空间实现的应用编程接口(API)而不是直接通过系统调用来编程. 要访问系统调用 ...

  5. Linux内核原理与分析-第一周作业

    本科期间,学校开设过linux相关的课程,当时的学习方式主要以课堂听授为主.虽然老师也提供了相关的学习教材跟参考材料,但是整体学下来感觉收获并不是太大,现在回想起来,主要还是由于自己课下没有及时动手实 ...

  6. 2019-2020-1 20199314 <Linux内核原理与分析>第一周作业

    前言 本周对实验楼的Linux基础入门进行了学习,目前学习到实验九完成到挑战二. 学习和实验内容 快速学习了Linux系统的发展历程及其简介,学习了下的变量.用户权限管理.文件打包及压缩.常用命令的和 ...

  7. Linux内核原理与分析-第二周作业

    写之前回看了一遍秒速五厘米:如果

  8. 2018-2019-1 20189221《Linux内核原理与分析》第一周作业

    Linux内核原理与分析 - 第一周作业 实验1 Linux系统简介 Linux历史 1991 年 10 月,Linus Torvalds想在自己的电脑上运行UNIX,可是 UNIX 的商业版本非常昂 ...

  9. 2018-2019-1 20189221《Linux内核原理与分析》第四周作业

    2018-2019-1 20189221<Linux内核原理与分析>第四周作业 教材学习:<庖丁解牛Linux内核分析> 第 3 章 MenuOS的构造 计算机三大法宝:存储程 ...

  10. 20169211《Linux内核原理与分析》第四周作业

    20169211<Linux内核原理与分析>第四周作业内容列表 1.教材第3.5章节知识学习总结: 2.实验楼配套实验二实验报告: 1.<linux内核设计与实现>教材第3.5 ...

随机推荐

  1. 利用jQuery实现用户名片小动画

    我爱撸码,撸码使我感到快乐!大家好,我是Counter.下面给大家介绍利用jQuery实现的小动画,非常的简便,如果有原生js操作的话,那么就不止这么多行了.至于CSS,个人觉得,这边CSS布局也蛮重 ...

  2. C# 绘图

    e.Graphics.DrawLine (绘制一条连接由坐标对指定的两个点的线条) e.Graphics.DrawString (绘制指定位置的文本字符串) e.Graphics.DrawRectan ...

  3. _luckdraw

    该表可以控制进行抽奖.10连抽: `comment` 备注 `itemId` 物品ID `chance`几率 `itemCount` 数量

  4. ABP权限认证

    通过AOP+特性实现 ABP默认的权限验证过滤器 AbpAuthorizationFilter   可以通过继承AsyncAuthorizationFilter 自定义自己的权限过滤器 权限数据存放表 ...

  5. pagex/y offsetx/y screenx/y clientx/y 用法及区别

    1  pagex/pagey:鼠标相对于整个页面的x/y坐标 注:整个页面的意思就是你整个页面的全部 例如:宽200px 高400px 那么pagex/y他们最大值就是它 2,offsetX/y与pa ...

  6. linux文件管理之链接文件

    文件链接 ====================================================================================软链接 或 符号链接硬 ...

  7. 基于Python——实现两个文件夹中的文件拷贝

    [背景]当复制一个文件夹中的某文件到另一个文件夹中时是一件很容易的事情,可是如果存在很多文件夹中的文件需要一一拷贝,就会变的很繁琐,稍有不慎就会遗漏,今天就用Python来解决这个问题—— [代码实现 ...

  8. 『Python』socket网络编程

    Python3网络编程 '''无论是str2bytes或者是bytes2str其编码方式都是utf-8 str( ,encoding='utf-8') bytes( ,encoding='utf-8' ...

  9. Django框架(四)

    八.Django 模型层(2) 多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息. ...

  10. springboot整合mybatis遇到无法扫描MaperScan包的问题

    1.启动类加上@MaperScan注解后,一直报错如下: Error creating bean with name 'platUserMapper' defined in file [D:\work ...