【转载请注明出处】http://www.cnblogs.com/mashiqi

2017/02/16

Minkowski不等式:

设$f$是$\mathbb{R}^n \times \mathbb{R}^n$上的Lebesgue可测函数,则对任意$1 \leq p < +\infty$,有$$\left( \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x,y)\mathrm{d}y \right|^p \mathrm{d}x \right)^{1/p} \leq \int_{\mathbb{R}^n}  \left( \int_{\mathbb{R}^n} \left| f(x,y) \right|^p \mathrm{d}x \right)^{1/p} \mathrm{d}y.$$

如何理解这个不等式呢?我们将$f(x,y)$中的$y$看作给定,于是$f(x,y)$就是关于$x$的函数。对于固定的数$y_1, \cdots, y_m$,我们可以得到$m$个关于$x$的函数$f(\cdot,y_1), \cdots, f(\cdot,y_m)$。由于$p-$范数$\|\cdot\|_{L^p(\mathbb{R}^n)}$满足三角不等式,因此我们有$$\|f(\cdot,y_1) + \cdots + f(\cdot,y_m)\|_{L^p(\mathbb{R}^n)} \leq \|f(\cdot,y_1)\|_{L^p(\mathbb{R}^n)} + \cdots + \|f(\cdot,y_m)\|_{L^p(\mathbb{R}^n)}.$$将这个式子写成积分形式,就是$$\left( \int_{\mathbb{R}^n} \left| \sum_{i=1}^m f(x,y_i) \right|^p \mathrm{d}x \right)^{1/p} \leq \sum_{i=1}^m  \left( \int_{\mathbb{R}^n} \left| f(x,y_i) \right|^p \mathrm{d}x \right)^{1/p}.$$

现在,我们将“对变量$y_i$从1到$m$的求和”推广为“对变量$y$在整个空间$\mathbb{R}^n$上的求和(也就是对$\mathbb{R}^n$上的积分)”,于是我们就可以得到$$\left( \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x,y)\mathrm{d}y \right|^p \mathrm{d}x \right)^{1/p} \leq \int_{\mathbb{R}^n}  \left( \int_{\mathbb{R}^n} \left| f(x,y) \right|^p \mathrm{d}x \right)^{1/p} \mathrm{d}y.$$

(注:以上并不是对Minkowski不等式的严谨的证明,而只是帮助理解的解释而已。不过严谨的证明就是从上面这个思路来的。)

如何理解Minkowski不等式的更多相关文章

  1. 从Jensen不等式到Minkowski不等式

    整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...

  2. 【学习笔记】Minkowski和

    这还是个被我咕了N久的玩意 Minkowski和是一个奇怪的玩意 他长这样 $S={a+b \| a \in A , b \in B}$ AB可以是点集也可是向量集(显然) 他可以处理一些奇怪的东西 ...

  3. POJ2217 Secretary 后缀数组&&高度数组

    学后缀数组后的一道裸题.先来讲讲收获,作为字符串初学者,后缀数组也是刚刚在学,所幸的是有一篇好的论文<后缀数组--处理字符串的有力工具>by 罗穗骞,里面非常详尽地介绍了有关后缀数组的概念 ...

  4. SVM及其对偶

    引自 http://my.oschina.net/wangguolongnk/blog/111349 1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负 ...

  5. <转>E-M算法

    转自http://blog.csdn.net/zouxy09/article/details/8537620/ 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊, ...

  6. 自定义圆形头像CircleImageView的使用和源码分析

    http://www.jcodecraeer.com/a/anzhuokaifa/androidkaifa/2015/0806/3268.html tools:context="com.ex ...

  7. 概率图模型之EM算法

    一.EM算法概述 EM算法(Expectation Maximization Algorithm,期望极大算法)是一种迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估 ...

  8. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  9. 【CSS3】 理解CSS3 transform中的Matrix(矩阵)

    理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...

随机推荐

  1. Linux查看服务器硬件配置命令

    一.查看服务器硬件信息 dmidecode|grep "System Information" -A9|egrep "Manufacturer|Product|Seria ...

  2. 【SCOI 2008】奖励关

    Problem Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关. 在这个奖励关里,系统将依次随机抛出 \(k\) 次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之 ...

  3. _spellmod

    -- 技能修改 -- 小技巧:可以针对技能进行修改 (进行会对其进行更新,增加技能开关) `comment` 备注 `spellId` 技能ID `reqId`需求ID `dmgMod`伤害倍数 `h ...

  4. 决策树算法原理(ID3,C4.5)

    决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林. 1. 决策树ID3算法的信息论基础   1970年昆兰找 ...

  5. xml.libxml2_添加带tagname的xml文本(xmlNewTextChild)

    1. 2.例子代码: int TgText::NodeNew_G2SVG(xmlNode* _pNodeCurrent_G, xmlNode* _pNodeParent_SVG, xmlNode** ...

  6. 力扣(LeetCode)605. 种花问题

    假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有.可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去. 给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花 ...

  7. 《Practical Vim》第八章:利用动作命令在文档中移动

    面向单词的移动 定义: Vim 提供了面向单词的动作命令,用于将光标正向/反向移动一个单词; 功能 命令 正向移动到下一单词开头 w 反向移动到上一单词的开头 b 正向移动到下一单词(当前单词)的结尾 ...

  8. Windows 独立启动方式安装 Archiva

    在 Windows 中以独立启动方式安装. 你可以将安装文件拷贝到任何你希望运行的目录中,下面的步骤中.我们没有将 Archiva 安装成服务,所以你需要通过控制台的方式来进行启动. Windows ...

  9. nodejs基础(三)

    apache是web服务器,tomcat是应用(java)服务器 ###  开源中国  查找http中加载不同类型文件所需要的Content-type:http://tool.oschina.net/ ...

  10. STATA一小步 我的一大步

    第一次用STATA,以前一直搞SPSS,简直是生产力革命啊. 记下写的第一个命令 也是实现了一个probit回归 clear cd C:\Users\Qian\Desktop\1 insheet us ...