Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。
Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 -

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True)
Python

在这里,有以下几个参数可以使用 -

  • left - 一个DataFrame对象。
  • right - 另一个DataFrame对象。
  • on - 列(名称)连接,必须在左和右DataFrame对象中存在(找到)。
  • left_on - 左侧DataFrame中的列用作键,可以是列名或长度等于DataFrame长度的数组。
  • right_on - 来自右的DataFrame的列作为键,可以是列名或长度等于DataFrame长度的数组。
  • left_index - 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右DataFrame的连接键的数量相匹配。
  • right_index - 与右DataFrame的left_index具有相同的用法。
  • how - 它是leftrightouter以及inner之中的一个,默认为内inner。 下面将介绍每种方法的用法。
  • sort - 按照字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为False时,在很多情况下大大提高性能。

现在创建两个不同的DataFrame并对其执行合并操作。

合并使用“how”的参数

如何合并参数指定如何确定哪些键将被包含在结果表中。如果组合键没有出现在左侧或右侧表中,则连接表中的值将为NA

这里是how选项和SQL等效名称的总结 -

合并方法 SQL等效 描述
left LEFT OUTER JOIN 使用左侧对象的键
right RIGHT OUTER JOIN 使用右侧对象的键
outer FULL OUTER JOIN 使用键的联合
inner INNER JOIN 使用键的交集
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print (left)
print("========================================")
print (right)
print("========================================")
print("在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner为交集")
rs = pd.merge(left,right,on='id')#在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner
print(rs)
print("========================================")
print("合并多个键上的两个数据框,默认为交集:")
rs = pd.merge(left,right,on=['id','subject_id'])
print(rs)
print("========================================")
print("使用左侧对象的键:")
rs = pd.merge(left, right, on='subject_id', how='left')
print (rs)
print("========================================")
print("使用键的联合:")
rs = pd.merge(left, right, how='outer', on='subject_id')
print (rs)
print("========================================")
print("使用键的交集:")
rs = pd.merge(left, right, how='inner', on='subject_id')
print (rs) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
Name id subject_id
0 Alex 1 sub1
1 Amy 2 sub2
2 Allen 3 sub4
3 Alice 4 sub6
4 Ayoung 5 sub5
========================================
Name id subject_id
0 Billy 1 sub2
1 Brian 2 sub4
2 Bran 3 sub3
3 Bryce 4 sub6
4 Betty 5 sub5
========================================
在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner为交集
Name_x id subject_id_x Name_y subject_id_y
0 Alex 1 sub1 Billy sub2
1 Amy 2 sub2 Brian sub4
2 Allen 3 sub4 Bran sub3
3 Alice 4 sub6 Bryce sub6
4 Ayoung 5 sub5 Betty sub5
========================================
合并多个键上的两个数据框,默认为交集:
Name_x id subject_id Name_y
0 Alice 4 sub6 Bryce
1 Ayoung 5 sub5 Betty
========================================
使用左侧对象的键:
Name_x id_x subject_id Name_y id_y
0 Alex 1 sub1 NaN NaN
1 Amy 2 sub2 Billy 1.0
2 Allen 3 sub4 Brian 2.0
3 Alice 4 sub6 Bryce 4.0
4 Ayoung 5 sub5 Betty 5.0
========================================
使用键的联合:
Name_x id_x subject_id Name_y id_y
0 Alex 1.0 sub1 NaN NaN
1 Amy 2.0 sub2 Billy 1.0
2 Allen 3.0 sub4 Brian 2.0
3 Alice 4.0 sub6 Bryce 4.0
4 Ayoung 5.0 sub5 Betty 5.0
5 NaN NaN sub3 Bran 3.0
========================================
使用键的交集:
Name_x id_x subject_id Name_y id_y
0 Amy 2 sub2 Billy 1
1 Allen 3 sub4 Brian 2
2 Alice 4 sub6 Bryce 4
3 Ayoung 5 sub5 Betty 5 Process finished with exit code 0

pandas合并/连接的更多相关文章

  1. SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)

    今天我将介绍在SQLServer 中的三种连接操作符类型,分别是:循环嵌套.哈希匹配和合并连接.主要对这三种连接的不同.复杂度用范例的形式一一介绍. 本文中使用了示例数据库AdventureWorks ...

  2. 排序合并连接(sort merge join)的原理

    排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理     排序合并连接(sort merge join)       访问次数:两张表都只会访 ...

  3. oracle表连接------>排序合并连接(Merge Sort Join)

    排序合并连接 (Sort Merge Join)是一种两个表在做连接时用排序操作(Sort)和合并操作(Merge)来得到连接结果集的连接方法. 对于排序合并连接的优缺点及适用场景例如以下: a,通常 ...

  4. oracle 表连接 - sort merge joins 排序合并连接

    https://blog.csdn.net/dataminer_2007/article/details/41907581一. sort merge joins连接(排序合并连接) 原理 指的是两个表 ...

  5. python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)

    # python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...

  6. arcgis中的Join(合并连接)和Relate(关联连接)

    arcgis中的Join(合并连接)和Relate(关联连接) 一.区别 1.连接关系不一样. Relate(关联连接)方式连接的两个表之间的记录可以是“一对一”.“多对一”.“一对多”的关系 Joi ...

  7. 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取

    1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来 ...

  8. Pandas | 19 合并/连接

    Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似.Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 - pd.me ...

  9. python pandas 合并数据函数merge join concat combine_first 区分

    pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分 ...

随机推荐

  1. 转载 .Net多线程编程—任务Task https://www.cnblogs.com/hdwgxz/p/6258014.html

    .Net多线程编程—任务Task   1 System.Threading.Tasks.Task简介 一个Task表示一个异步操作,Task的创建和执行是独立的. 只读属性: 返回值 名称 说明 ob ...

  2. 转载 【.NET基础】--委托、事件、线程(1) https://www.cnblogs.com/chengzish/p/4559268.html

    [.NET基础]--委托.事件.线程(1)   1,委托 是存放方法的指针的清单,也就是装方法的容器 A, 新建winform项目[01委托],项目中添加dg_SayHi.cs 委托类 用于存储方法 ...

  3. maven中的mirrors

    文章转自http://blog.csdn.net/technologyboy/article/details/17143641 简单点来说,repository就是个仓库.maven里有两种仓库,本地 ...

  4. python 获取当前路径

    使用os模块: os.path.realpath(__file__)

  5. 开源项目Bug悬赏任务

    导读 2014 年开源加密库 OpenSSL 项目爆出的高危漏洞 Heartblood 让世人意识到一些鲜为人知的开源项目对整个互联网和其它基础设施的完整性和可靠性至关重要,随后 Linux 基金会发 ...

  6. <<linux device driver,third edition>> Chapter 4:Debugging Techniques

    Debugging by Printing printk lets you classify messages accoring to their severity by associating di ...

  7. 学习CSS布局 - box-sizing

    box-sizing 人们慢慢的意识到传统的盒子模型不直接,所以他们新增了一个叫做 box-sizing 的CSS属性. 当你设置一个元素为 box-sizing: border-box; 时,此元素 ...

  8. linux驱动编写之中断处理

    一.中断 1.概念 学过单片机的应该非常清楚中断的概念,也就是CPU在正常执行程序过程中,出现了突发事件(中断事件),于是CPU暂停当前程序的执行,转去处理突发事件.处理完毕后,CPU又返回被中断的程 ...

  9. xhtml和html的区别 html5和xhtml的区别

    xhtml和html的区别 - 分为两大类比较:一个是功能上的差别,另外是书写习惯的差别.关于功能上的差别,主要是XHTML可兼容各大浏览器.手机以及PDA,并且浏览器也能快速正确地编译网页,- XH ...

  10. aurora 64B/66B ip核设置与例程代码详解

    见网页https://blog.csdn.net/u014586651/article/details/84349328 https://blog.csdn.net/u012135070/articl ...