pandas合并/连接
Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。
Pandas提供了一个单独的merge()
函数,作为DataFrame对象之间所有标准数据库连接操作的入口 -
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True)
在这里,有以下几个参数可以使用 -
- left - 一个DataFrame对象。
- right - 另一个DataFrame对象。
- on - 列(名称)连接,必须在左和右DataFrame对象中存在(找到)。
- left_on - 左侧DataFrame中的列用作键,可以是列名或长度等于DataFrame长度的数组。
- right_on - 来自右的DataFrame的列作为键,可以是列名或长度等于DataFrame长度的数组。
- left_index - 如果为
True
,则使用左侧DataFrame中的索引(行标签)作为其连接键。 在具有MultiIndex(分层)的DataFrame的情况下,级别的数量必须与来自右DataFrame的连接键的数量相匹配。 - right_index - 与右DataFrame的left_index具有相同的用法。
- how - 它是left, right, outer以及inner之中的一个,默认为内inner。 下面将介绍每种方法的用法。
- sort - 按照字典顺序通过连接键对结果DataFrame进行排序。默认为
True
,设置为False
时,在很多情况下大大提高性能。
现在创建两个不同的DataFrame并对其执行合并操作。
合并使用“how”的参数
如何合并参数指定如何确定哪些键将被包含在结果表中。如果组合键没有出现在左侧或右侧表中,则连接表中的值将为NA
。
这里是how
选项和SQL等效名称的总结 -
合并方法 | SQL等效 | 描述 |
---|---|---|
left |
LEFT OUTER JOIN |
使用左侧对象的键 |
right |
RIGHT OUTER JOIN |
使用右侧对象的键 |
outer |
FULL OUTER JOIN |
使用键的联合 |
inner |
INNER JOIN |
使用键的交集 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py import pandas as pd
left = pd.DataFrame({
'id':[1,2,3,4,5],
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5']})
right = pd.DataFrame(
{'id':[1,2,3,4,5],
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5']})
print (left)
print("========================================")
print (right)
print("========================================")
print("在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner为交集")
rs = pd.merge(left,right,on='id')#在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner
print(rs)
print("========================================")
print("合并多个键上的两个数据框,默认为交集:")
rs = pd.merge(left,right,on=['id','subject_id'])
print(rs)
print("========================================")
print("使用左侧对象的键:")
rs = pd.merge(left, right, on='subject_id', how='left')
print (rs)
print("========================================")
print("使用键的联合:")
rs = pd.merge(left, right, how='outer', on='subject_id')
print (rs)
print("========================================")
print("使用键的交集:")
rs = pd.merge(left, right, how='inner', on='subject_id')
print (rs) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
Name id subject_id
0 Alex 1 sub1
1 Amy 2 sub2
2 Allen 3 sub4
3 Alice 4 sub6
4 Ayoung 5 sub5
========================================
Name id subject_id
0 Billy 1 sub2
1 Brian 2 sub4
2 Bran 3 sub3
3 Bryce 4 sub6
4 Betty 5 sub5
========================================
在一个键上合并两个数据帧,how - 它是left, right, outer以及inner之中的一个,默认为内inner为交集
Name_x id subject_id_x Name_y subject_id_y
0 Alex 1 sub1 Billy sub2
1 Amy 2 sub2 Brian sub4
2 Allen 3 sub4 Bran sub3
3 Alice 4 sub6 Bryce sub6
4 Ayoung 5 sub5 Betty sub5
========================================
合并多个键上的两个数据框,默认为交集:
Name_x id subject_id Name_y
0 Alice 4 sub6 Bryce
1 Ayoung 5 sub5 Betty
========================================
使用左侧对象的键:
Name_x id_x subject_id Name_y id_y
0 Alex 1 sub1 NaN NaN
1 Amy 2 sub2 Billy 1.0
2 Allen 3 sub4 Brian 2.0
3 Alice 4 sub6 Bryce 4.0
4 Ayoung 5 sub5 Betty 5.0
========================================
使用键的联合:
Name_x id_x subject_id Name_y id_y
0 Alex 1.0 sub1 NaN NaN
1 Amy 2.0 sub2 Billy 1.0
2 Allen 3.0 sub4 Brian 2.0
3 Alice 4.0 sub6 Bryce 4.0
4 Ayoung 5.0 sub5 Betty 5.0
5 NaN NaN sub3 Bran 3.0
========================================
使用键的交集:
Name_x id_x subject_id Name_y id_y
0 Amy 2 sub2 Billy 1
1 Allen 3 sub4 Brian 2
2 Alice 4 sub6 Bryce 4
3 Ayoung 5 sub5 Betty 5 Process finished with exit code 0
pandas合并/连接的更多相关文章
- SQL连接操作符介绍(循环嵌套, 哈希匹配和合并连接)
今天我将介绍在SQLServer 中的三种连接操作符类型,分别是:循环嵌套.哈希匹配和合并连接.主要对这三种连接的不同.复杂度用范例的形式一一介绍. 本文中使用了示例数据库AdventureWorks ...
- 排序合并连接(sort merge join)的原理
排序合并连接(sort merge join)的原理 排序合并连接(sort merge join)的原理 排序合并连接(sort merge join) 访问次数:两张表都只会访 ...
- oracle表连接------>排序合并连接(Merge Sort Join)
排序合并连接 (Sort Merge Join)是一种两个表在做连接时用排序操作(Sort)和合并操作(Merge)来得到连接结果集的连接方法. 对于排序合并连接的优缺点及适用场景例如以下: a,通常 ...
- oracle 表连接 - sort merge joins 排序合并连接
https://blog.csdn.net/dataminer_2007/article/details/41907581一. sort merge joins连接(排序合并连接) 原理 指的是两个表 ...
- python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)
# python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...
- arcgis中的Join(合并连接)和Relate(关联连接)
arcgis中的Join(合并连接)和Relate(关联连接) 一.区别 1.连接关系不一样. Relate(关联连接)方式连接的两个表之间的记录可以是“一对一”.“多对一”.“一对多”的关系 Joi ...
- 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取
1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False) -->> axis=1是按行来 ...
- Pandas | 19 合并/连接
Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似.Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 - pd.me ...
- python pandas 合并数据函数merge join concat combine_first 区分
pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分 ...
随机推荐
- JEECG平台权限设计
JEECG平台权限设计 链接存放位置:https://github.com/PlayTaoist/jeecg-lession/tree/master/%E6%9D%83%E9%99%90%E7%AE% ...
- AI 数值计算
数值计算,通过迭代来更新解的估计值. 1.上溢和下溢 实数按照一定的精度存储在计算机中,通常存在误差,进而可能导致一些错误. 1)下溢(underflow),例如接近0的数 2)上溢(overflow ...
- java算法----排序----(1)插入排序
package log; public class Test4 { /** * java算法---插入排序 * * @param args */ public static void main(Str ...
- 如何学习 Webpack
webpack-howto Tip: 本文是 webpack-howto 的原文,我觉得这篇文章写得非常好,确实算是目前学习 webpack 入门的必读文章.直接收录之. 本教程的目标 这是一本教你如 ...
- 3.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——less即more
Unix提供了两个工具查看不止文件的头部和尾部.这个功能程序叫做more,但有种更强大的变异体叫做less(起初我认为这是玩笑).less这个程序是交互性地,所以很难在输出时捕获,但是仍然为大家提供了 ...
- Angularjs演示Service功能
在angularjs中,我们可以自定义自己的service.可以说得是自定义的方法,函数. 下面我们一步一步来演示吧:首先为angularjs定义一个app: var demoApp = angula ...
- sql字符串累加
函数 stuff(param1, startIndex, length, param2) 函数说明将param1中自startIndex(SQL中都是从1开始,而非0)起,删除length个字符,然后 ...
- Task 异步编程测试案例及基础应用说明
对于多线程,我们经常使用的是Thread.在我们了解Task之前,如果我们要使用多核的功能可能就会自己来开线程,然而这种线程模型在.net 4.0之后被一种称为基于“任务的编程模型”所冲击,因为tas ...
- Python基础(dict 和 set) 字典和set
dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. 举个例子,假设要根据同学的名字 ...
- Python爬虫利器二之Beautiful Soup的用法
上一节我们介绍了正则表达式,它的内容其实还是蛮多的,如果一个正则匹配稍有差池,那可能程序就处在永久的循环之中,而且有的小伙伴们也对写正则表达式的写法用得不熟练,没关系,我们还有一个更强大的工具,叫Be ...