已知$x_1,x_2,x_3\ge0,x_1+x_2+x_3=1$求

$$(x_1+3x_2+5x_3)(x_1+\frac{1}{3}x_2+\frac{1}{5}x_3)(x_1+x_3+3x_2)$$的最大值。



解答:$$(x_1+3x_2+5x_3)(x_1+\frac{1}{3}x_2+\frac{1}{5}x_3)(x_1+x_3+3x_2)$$

$$=\frac{1}{6}(x_1+3x_2+5x_3)(6x_1+2x_2+\frac{6}{5}x_3)(x_1+x_3+3x_2)$$

$$\le\frac{1}{6}(x_1+3x_2+5x_3)(6x_1+2x_2+2x_3)(x_1+x_3+3x_2)$$

$$\le\frac{1}{6}\left(\frac{x_1+3x_2+5x_3+6x_1+2x_2+2x_3+x_1+x_3+3x_2}{3}\right)^3=\frac{256}{81}$$

当$x_1=\frac{1}{6}\land x_2=\frac{5}{6}\land x_3=0$时等号成立.

MT【64】2017联赛一试不等式的一个加强练习的更多相关文章

  1. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  2. MT【56】2017联赛一试解答最后一题:一道复数题的几何意义

  3. 2017百度春招<不等式排列>

    题目: 度度熊最近对全排列特别感兴趣,对于1到n的一个排列,度度熊发现可以在中间根据大小关系插入合适的大于和小于符号(即 '>' 和 '<' )使其成为一个合法的不等式数列.但是现在度度熊 ...

  4. MT【327】两道不等式题

    当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y ...

  5. MT【230】一道代数不等式

    设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...

  6. MT【18】幂平均不等式的证明

    评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.

  7. MT【98】三元对称不等式

    评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题.值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系.事实上 ...

  8. 熊猫猪新系统測试之中的一个:Windows 10 技术预览版

    话说本猫不用windows非常多年了呀! 只是看到微软最新的Windows10还是手痒了.想安装体验一把. 于是第一时间下载,并做成usb引导安装镜像,在08年的老台式机上安装尝鲜鸟.下载ISO和安装 ...

  9. 如果你想深刻理解ASP.NET Core请求处理管道,可以试着写一个自定义的Server

    我们在上面对ASP.NET Core默认提供的具有跨平台能力的KestrelServer进行了详细介绍(<聊聊ASP.NET Core默认提供的这个跨平台的服务器——KestrelServer& ...

随机推荐

  1. C# 中堆与栈的浅记

    C# 中堆与栈的浅记 什么是堆和栈? 简言之.堆和栈是驻留在内存中的区域,它们的作用是帮助我们运行代码.在.Net Framework 环境下,当我们的代码运行时,内存中的堆和栈便存储了这些代码,并包 ...

  2. VMware Ubuntu蓝屏问题解决

    解决方法: 问题分析启动 Ubuntu 可以进入登录界面,说明系统是可以运行起来的.没有发生大块的核心数据损坏,linux 系统一般都可以修复,一定要淡定.于是开始放狗(google)搜索.“VMwa ...

  3. asp.net core部署时自定义监听端口,提高部署的灵活性

    另一种方式 https://www.cnblogs.com/stulzq/p/9039836.html 代码截图: 贴一下代码,方便复制: //默认端口号5000 string port = &quo ...

  4. Linux Namespace : IPC

    IPC namespace 用来隔离 System V IPC 对象和 POSIX message queues.其中 System V IPC 对象包含共享内存.信号量和消息队列,笔者在<Sy ...

  5. 从Stampery到Chronicled,区块链公证业务的实践

    Stampery就是这样一家利用比特币区块链技术代替公证人的创业公司,能为所有的敏感文件提供具有法律约束力的证明.可以用Stampery证明任何文件,它能很好地保护知识产权,证明遗嘱.宣誓.合同.家庭 ...

  6. 针对Nginx日志的相关运维操作记录

    在分析服务器运行情况和业务数据时,nginx日志是非常可靠的数据来源,而掌握常用的nginx日志分析命令的应用技巧则有着事半功倍的作用,可以快速进行定位和统计. 1)Nginx日志的标准格式(可参考: ...

  7. MongoDB副本集(一主一备+仲裁)环境部署-运维操作记录

    MongoDB复制集是一个带有故障转移的主从集群.是从现有的主从模式演变而来,增加了自动故障转移和节点成员自动恢复.MongoDB复制集模式中没有固定的主结点,在启动后,多个服务节点间将自动选举产生一 ...

  8. Linux系统本地yum源环境配置记录

    由于IDC的一些服务器没有外网,不能对外访问.所以打算部署一套内网的yum源环境,以供内网服务器使用.以下简单记录下操作过程: 1)下载centos6.9和centos7.3的镜像,并挂载 [root ...

  9. vs2015安装及初步试用

    Vs2015一直都听说好用,便捷.之前用vc++6.0,总感觉界面很灰,让人编程兴趣不高,恰巧借此机会,安装一下vs2015,从编译器上体验下编程的舒心,方便.希望我不会变得太懒... 首先,我下的是 ...

  10. 《移山之道》Reading Task

    老师布置的阅读任务虽然是附加的作业,但是对我来说是个很好的学习机会.软件工程主要是对工程的开发进行学习,毕竟在学校老师教了那么多的知识,我们课下做了那么多的练习并没有提高我们做一个工程的能力.一个项目 ...