【hdu5306】 Gorgeous Sequence
http://acm.hdu.edu.cn/showproblem.php?pid=5306 (题目链接)
题意
区间取$min$操作,区间求和操作,区间求最值操作。
Solution
乱搞一通竟然AC了= =,具体参考吉如一论文。蒯一发上来方便自己以后看嘿嘿。
对线段树中的每一个节点除了维护区间最值和区间和以外,还要额外维护区间中的最大值$ma$,严格次大值$se$以及最大值个数$t$。
现在假设我们要让区间$[L,R]$对$x$取$\min$,我们先在线段树中定位这个区间,对定位的每一个节点,我们开始暴力搜索。搜索到的每一个节点分三种情况进行讨论:
- 当$ma \leq x$时,显然这一次修改不会对这个节点产生影响,直接退出。
- 当$se<x<ma$时,显然这一次修改只会影响所有最大值,所以我们把$sum$加上$t*(x-ma)$,把$ma$更新为$x$,接着打上标记以后退出。
- 当$x \leq se$时,我们无法直接更新这个节点的信息,因此在这时,我们对当前节点的左右儿子递归搜索。
好暴力的做法,然而复杂度证明是玄学的势能分析,嗯我是实践派。
细节
LL,也许你需要一发读入优化= =。
代码
// hdu5306
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<30)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std;
inline int gi() {
int x=0;char ch=getchar();
while (ch<'0' || ch>'9') ch=getchar();
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x;
} const int maxn=1000010;
int n,m,a[maxn];
struct node {int l,r,t,ma,se,tag;LL s;}tr[maxn<<2]; void pushup(int k) {
int l=k<<1,r=k<<1|1;
if (tr[l].ma==tr[r].ma) {
tr[k].ma=tr[l].ma,tr[k].t=tr[l].t+tr[r].t;
tr[k].se=max(tr[l].se,tr[r].se);
}
else if (tr[l].ma<tr[r].ma) {
tr[k].ma=tr[r].ma,tr[k].t=tr[r].t;
tr[k].se=max(tr[l].ma,tr[r].se);
}
else {
tr[k].ma=tr[l].ma,tr[k].t=tr[l].t;
tr[k].se=max(tr[l].se,tr[r].ma);
}
tr[k].s=tr[l].s+tr[r].s;
}
void pushdown(int k) {
int l=k<<1,r=k<<1|1,val=tr[k].ma;
if (tr[l].se<val && tr[l].ma>val) {
tr[l].s-=1LL*tr[l].t*(tr[l].ma-val);
tr[l].ma=val;tr[l].tag=1;
}
if (tr[r].se<val && tr[r].ma>val) {
tr[r].s-=1LL*tr[r].t*(tr[r].ma-val);
tr[r].ma=val;tr[r].tag=1;
}
tr[k].tag=0;
} void build(int k,int s,int t) {
tr[k].l=s,tr[k].r=t;tr[k].se=-1;tr[k].tag=0;
if (s==t) {tr[k].s=tr[k].ma=a[s];tr[k].t=1;return;}
int mid=(s+t)>>1;
build(k<<1,s,mid);
build(k<<1|1,mid+1,t);
pushup(k);
}
void modify(int k,int s,int t,int val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) {
if (val>=tr[k].ma) return;
if (tr[k].se<val) {
tr[k].s-=1LL*tr[k].t*(tr[k].ma-val);
tr[k].ma=val;tr[k].tag=1;
return;
}
}
if (tr[k].tag) pushdown(k);
if (t<=mid) modify(k<<1,s,t,val);
else if (s>mid) modify(k<<1|1,s,t,val);
else modify(k<<1,s,mid,val),modify(k<<1|1,mid+1,t,val);
pushup(k);
}
int querymx(int k,int s,int t) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) return tr[k].ma;
if (tr[k].tag) pushdown(k);
if (t<=mid) return querymx(k<<1,s,t);
else if (s>mid) return querymx(k<<1|1,s,t);
else return max(querymx(k<<1,s,mid),querymx(k<<1|1,mid+1,t));
}
LL querysum(int k,int s,int t) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) return tr[k].s;
if (tr[k].tag) pushdown(k);
if (t<=mid) return querysum(k<<1,s,t);
else if (s>mid) return querysum(k<<1|1,s,t);
else return querysum(k<<1,s,mid)+querysum(k<<1|1,mid+1,t);
} int main() {
int T=gi();
while (T--) {
n=gi(),m=gi();
for (int i=1;i<=n;i++) a[i]=gi();
build(1,1,n);
for (int op,x,y,t,i=1;i<=m;i++) {
op=gi(),x=gi(),y=gi();
if (op==0) t=gi(),modify(1,x,y,t);
if (op==1) printf("%d\n",querymx(1,x,y));
if (op==2) printf("%lld\n",querysum(1,x,y));
}
}
return 0;
}
【hdu5306】 Gorgeous Sequence的更多相关文章
- 【hdu5306】Gorgeous Sequence 线段树区间最值操作
题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...
- 【HDU5306】Gorgeous Sequence
这个题目是Segment-Tree-beats的论文的第一题. 首先我们考虑下这个问题的不同之处在于,有一个区间对x取max的操作. 那么如何维护这个操作呢? 就是对于线段树的区间,维护一个最大值标记 ...
- 【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】
题目大意:给你一个序列a,你有三个操作,0: x y t将a[x,y]和t取min:1:x y求a[x,y]的最大值:2:x y求a[x,y]的sum 题解:首先很明显就是线段树裸题,那么考虑如何维护 ...
- 【arc071f】Infinite Sequence(动态规划)
[arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...
- 【arc074e】RGB Sequence(动态规划)
[arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...
- 【BZOJ1367】[Baltic2004]sequence 左偏树
[BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...
- 【BZOJ3043】IncDec Sequence 乱搞
[BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...
- 【POJ2778】DNA Sequence(AC自动机,DP)
题意: 生物课上我们学到,DNA序列中只有A, C, T和G四种片段. 经科学发现,DNA序列中,包含某些片段会产生不好的基因,如片段"ATC"是不好片段,则"AGATC ...
- 【leetcode】 Permutation Sequence (middle)
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
随机推荐
- Ubuntu16.04密码正确 进不去桌面系统(已测试恢复正常)
遇到过两次ubuntu输入密码正确,但是进不去系统,输入密码后,跳转到一下界面 之后又返回到登陆界面,一直这样循环输入密码. Guest用户可以. 解决办法: 1.进入tty下 ...
- 从统计局采集最新的省市区县数据,纯js
本文更新(移步查阅): 19-04-15 新采集了2018的省市区三级坐标和行政区域边界 19-03-22 采集了2018的城市数据 18-11-28 采集了2017的城市数据 数据下载 GitHub ...
- MRT与MRTS工具官宣退休,推荐使用HEG
今天错误的删除搞丢了之前下载的MRT与MRTS工具,浏览Modis官网下载时发现找不到了,后来在其官网上发现了这则通知,原来早已停止更新的MRT这次彻底退修了.通知原文如下~~~ The downlo ...
- RDMA技术解析
文章出处:https://mp.weixin.qq.com/s/pW-tQR4AYr1Gtd4dpHVW7w 摘要:远程直接内存访问(即Remote Direct Memory Access)是一种直 ...
- LB层到Real Server之间访问请求的响应时间及HTTP状态码监控及报警设置
为了监控到各业务的访问质量,基于LB层的Nginx日志,实现LB层到Real Server之间访问请求的响应时间(即upstream_response_time)及HTTP状态码(即upstream_ ...
- Python_复习_习题_29
# 之前做得的题 以后再遇到能保证会# 下周二考 :所有的知识# 面试题:认真对待## 三元运算符# 接收结果的变量 = 条件为真的结果 if 条件 else 条件为假的结果# 接收结果的变量 = “ ...
- 洛谷P1004 方格取数-四维DP
题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...
- 快速搭建BIND服务,并实现解析
公司有测试需求,当连接一个网络后自动会进入产品的测试环境,所以搭建了一个DNS解析服务,来完成此需求. 参考:http://blog.chinaunix.net/uid-30149335-id-506 ...
- L2-027. 名人堂与代金券
链接:名人堂与代金券 在比赛中这题只得了2分,赛后发现原来strcmp函数并不是只返回-1,0,1三种,而是返回正数负数0 但是在我的电脑上一般就是返回前三种,只是用后面的三种更稳妥点 都怪我基础不扎 ...
- 【课程总结】Linux内核分析课程总结
程涵 原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 每周实验报告: 反汇编一个简单的C程序 ...