【BZOJ2299】[HAOI2011]向量(数论)

题面

BZOJ

洛谷

题解

首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来。\((a,b)(a,-b)(b,a)(b,-a)\),我们假设这四个出现的次数分别为\(c1,c2,c3,c4\)。

那么我们就有方程。

\[\begin{cases}a(c1+c2)+b(c3+c4)&=x\\b(c1-c2)+a(c3-c4)&=y\end{cases}
\]

因为合法的情况一定保证了所有数都是整数,因此\(c1+c2\)和\(c1-c2\)要同奇偶,\(c3,c4\)同理。

首先先判断是否有整数解,那么拿\(d=gcd(a,b)\)直接检查\(d|x,d|y\)就行了。

有了整数解我们很容易写出通解,因为只需要考虑奇偶性,所以根本不需要求出一组合法解,只需要求出一种合法的奇偶性。剩下的只需要\(check\)一下最终能否做到配对的奇偶性即可。

那么讨论\(a,b\)的奇偶性和\(x,y\)的奇偶性。(都是除掉\(gcd\)之后的值)

当\(a,b\)都为奇数的时候,显然只有\(x,y\)同奇偶的时候才有解,否则无法做到对应系数奇偶性相等。

当\(a,b\)一奇一偶的时候,发现偶数对应的系数可以随意调整,因此一定有解。

当\(a,b\)都是偶数的时候,听说你把\(gcd\)除掉之后还能两个数都是偶数??

那就做完了。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int main()
{
int T=read();
while(T--)
{
int a=read(),b=read(),x=read(),y=read();
int d=__gcd(a,b);
if(x%d||y%d){puts("N");continue;}
a/=d;b/=d;x/=d;y/=d;
bool fl=false;
if((a&1)&&(b&1)&&((x&1)==(y&1)))fl=true;
if(((a&1)&&!(b&1))||(!(a&1)&&(b&1)))fl=true;
puts(fl?"Y":"N");
}
return 0;
}

【BZOJ2299】[HAOI2011]向量(数论)的更多相关文章

  1. BZOJ2299 HAOI2011向量(数论)

    设最后的组成为x=x0a+x1b,y=y0a+y1b.那么容易发现x0和y0奇偶性相同.x1和y1奇偶性相同.于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a ...

  2. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  3. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

  4. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  5. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  6. P2520 [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  7. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  8. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

  9. 【[HAOI2011]向量】

    靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...

随机推荐

  1. 如何实现.net程序的进程注入

    原文:如何实现.net程序的进程注入   如何实现.net程序的进程注入                                   周银辉 进程注入比较常见,比如用IDE调试程序以及一些Sp ...

  2. SSL踩坑ERR_SSL_VERSION_OR_CIPHER_MISMATCH

    最近公司项目开发了一个微信小程序,并且部署测试OK,由于微信小程序调用的后端接口必须是HTTPS,所以给接口安装了SSL,第一天测试都正常.第二天早上再使用时页面无响应. 抓包发现是后端接口抛出: n ...

  3. css-文本左右对齐

    1.给目标元素加 display:block;text-align:justify; 2.如果最后一行没充满整行,因为text-align:justify,所以字字之间会有间隔,应给目标元素加伪类,添 ...

  4. item 7:当创建对象的时候,区分()和{}的使用

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 从不同的角度来看,在C++11中,对象初始化拥有多种语法选择,这体 ...

  5. Linux下rsyslog日志收集服务环境部署记录

    rsyslog 可以理解为多线程增强版的syslog. 在syslog的基础上扩展了很多其他功能,如数据库支持(MySQL.PostgreSQL.Oracle等).日志内容筛选.定义日志格式模板等.目 ...

  6. HDOJ2009_求数列的和

    简单的考察对浮点数使用的水题 HDOJ2009_求数列的和 #include<iostream> #include<stdio.h> #include<stdlib.h& ...

  7. css3-盒模型新增属性

    box-shadow:跟text-shadow类似,可多层叠加 box-shadow:[inset] x y blur [spread] color inset:投影方式,inset内投影,不加参数外 ...

  8. [转帖]Tomcat目录结构详解

    Tomcat目录结构详解 https://www.cnblogs.com/veggiegfei/p/8474484.html 之前应该是知道一点 但是没有这么系统 感谢原作者的描述. 1.bin: 该 ...

  9. [转载]linux段页式内存管理技术

    原始博客地址: http://blog.csdn.net/qq_26626709/article/details/52742470 一.概述 1.虚拟地址空间 内存是通过指针寻址的,因而CPU的字长决 ...

  10. jetty 介绍以及小例子

    Jetty 是一个开源的servlet容器,它为基于Java的web容器,例如JSP和servlet提供运行环境.Jetty是使用Java语言编写的,它的API以一组JAR包的形式发布.开发人员可以将 ...