【BZOJ2299】[HAOI2011]向量(数论)

题面

BZOJ

洛谷

题解

首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来。\((a,b)(a,-b)(b,a)(b,-a)\),我们假设这四个出现的次数分别为\(c1,c2,c3,c4\)。

那么我们就有方程。

\[\begin{cases}a(c1+c2)+b(c3+c4)&=x\\b(c1-c2)+a(c3-c4)&=y\end{cases}
\]

因为合法的情况一定保证了所有数都是整数,因此\(c1+c2\)和\(c1-c2\)要同奇偶,\(c3,c4\)同理。

首先先判断是否有整数解,那么拿\(d=gcd(a,b)\)直接检查\(d|x,d|y\)就行了。

有了整数解我们很容易写出通解,因为只需要考虑奇偶性,所以根本不需要求出一组合法解,只需要求出一种合法的奇偶性。剩下的只需要\(check\)一下最终能否做到配对的奇偶性即可。

那么讨论\(a,b\)的奇偶性和\(x,y\)的奇偶性。(都是除掉\(gcd\)之后的值)

当\(a,b\)都为奇数的时候,显然只有\(x,y\)同奇偶的时候才有解,否则无法做到对应系数奇偶性相等。

当\(a,b\)一奇一偶的时候,发现偶数对应的系数可以随意调整,因此一定有解。

当\(a,b\)都是偶数的时候,听说你把\(gcd\)除掉之后还能两个数都是偶数??

那就做完了。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int main()
{
int T=read();
while(T--)
{
int a=read(),b=read(),x=read(),y=read();
int d=__gcd(a,b);
if(x%d||y%d){puts("N");continue;}
a/=d;b/=d;x/=d;y/=d;
bool fl=false;
if((a&1)&&(b&1)&&((x&1)==(y&1)))fl=true;
if(((a&1)&&!(b&1))||(!(a&1)&&(b&1)))fl=true;
puts(fl?"Y":"N");
}
return 0;
}

【BZOJ2299】[HAOI2011]向量(数论)的更多相关文章

  1. BZOJ2299 HAOI2011向量(数论)

    设最后的组成为x=x0a+x1b,y=y0a+y1b.那么容易发现x0和y0奇偶性相同.x1和y1奇偶性相同.于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a ...

  2. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  3. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

  4. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  5. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  6. P2520 [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  7. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  8. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

  9. 【[HAOI2011]向量】

    靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...

随机推荐

  1. LiveCharts文档-3开始-4可用的图表

    原文:LiveCharts文档-3开始-4可用的图表 LiveCharts文档-3开始-4可用的图表 LiveCharts共有5类图表,你将会在后面的章节当中看到这些图表的使用方法. Cartesia ...

  2. visual studio Web发布至 IIS WebDeploy出错(未能创建SSL/TLS安全通道)Could not create SSL/TLS secure channel

    问题发生的原因是VS 15.9尝试使用系统默认值进行TLS握手,但是要在VS内的某处设置为TLS1.2. 此问题的解决方法是在部署项目的IIS服务器上启用TLS 1.2.例如,请按照此文章中的说明操作

  3. Asp.Net MVC 获取当前 Controller Action Area

    获取控制器名称: ViewContext.RouteData.Values["controller"].ToString(); 获取Action名称: ViewContext.Ro ...

  4. 止不住的裁员潮:看京东前员工吐槽——绩效打C还希望我好好干

    昨天,京东裁员消息被证实,京东将在2019年末位淘汰10%的副总裁级别以上的高管. 在互联网职场交流社区,一名自称京东的员工如此吐槽:办完离职了心情大好,自由放飞,明天入职新公司,你给新员工打C,还希 ...

  5. (11)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- Thrift高效通讯 (完结)

    一. 什么是 RPC Restful 采用 Http 进行通讯,优点是开放.标准.简单.兼容性升级容易: 缺点是性能略低.在 QPS 高或者对响应时间要求苛刻的服务上,可以用 RPC(Remote P ...

  6. 时区提示:Local time zone must be set--see zic manual page 2018的解决办法

    问题描述:在centos服务器上执行date命令时,显示的时间信息中的时区不正常,如下: [root@ulocalhost ~]# date Mon Apr 9 02:57:38 Local time ...

  7. Beta阶段爬取数目预估

    预计于12月29号能进行Beta版本发布. Beta阶段我们的爬取动作应该更有针对性,在爬取期间如若数据处理小组有需求,会优先爬取数据处理小组提供的种子链接.预估在项目展示之前能够爬取的数目: 普通网 ...

  8. 20135327郭皓--Linux内核分析第七周 可执行程序的装载

    第七周 可执行程序的装载 郭皓 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 ...

  9. 生命游戏&一维细胞自动机 笔记

    de 生命游戏是一种简单的聚合模型,展示了事物是如何聚合的,是自动机(CA)模型的一种.由剑桥大学约翰康威发明,其规则为: 1. 每个细胞拥有八个邻居,细胞状态只有存活(黑)和死亡(白)两种: 2.处 ...

  10. 大三上学期安卓一边学一边开始做一个自己觉得可以的项目 广商小助手App 加油

    这项目构思好多 一个人一步一步来 一边做一边为后面应用铺设 广商小助手APP 设计出的软件登录场景 实现(算是可以) 界面大体出来了 界面点击方面也做了很多特效 上图其实点击各颜色后会出现各种图和反应 ...