首先把相同的事件点合并,那么每个点有时间$t_i$,位置$x_i$,价值$v_i$。

考虑DP,设$f_i$表示按时间从小到大考虑每个事件,目前位于事件$i$的时间与位置时,最多能让多少个事件发生。在$t_i$秒初对方不能碰到$i$,但在这一秒结束结算时,对方可以碰到$i$。

则$f_i=\max(f_j)+v_i$。

其中,$j$需要满足一系列条件:

$1.j$要能在规定时间内到达$i$,也就是$t_i-t_j\geq|x_i-x_j|$。

将绝对值拆掉并移项,得:

$t_i-x_i\geq t_j-x_j(1)$

$t_i+x_i\geq t_j+x_j(2)$

$2.$在$t_i$秒初对方不能碰到$i$:

设$s_i$表示前$i$秒存在的事件数,那么在第$t_i$秒初,也就是第$t_i-1$秒末,对方一共前进了$s_{t_i-1}-f_j$步,所以$s_{t_i-1}-f_j<x_i$,即$f_j>s_{t_i-1}-x_i(3)$。

$3.j$在移动到$i$的过程中不能被对方追上:

最坏情况下,一定是$j$在$t_j$时刻位于$x_j$,然后一直向右移动,那么在第$p(t_j\leq p<t_i)$秒末,对方位于$s_p-f_j$,$j$位于$x_j-t_j+p$,需要满足:

$s_p-f_j<x_j-t_j+p$

移项得:

$s_p-p<x_j-t_j+f_j$

即$\max(s_p-p)<x_j-t_j+f_j$

对$s_p-p$建线段树维护区间最大值,然后在线段树上二分即可得到最大的$o$,满足$[t_j,o)$都不会被追上,设$lim_j=o$,则$lim_j\geq t_i(4)$。

对于限制$(3)$,只需要求出最大的$f_j$,然后判断是否可行即可。

对于限制$(1)$,可以通过排序解决。

对于限制$(2)$和$(4)$,可以cdq分治后扫描线+树状数组处理。

时间复杂度$O(n\log^2n)$。

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100010,M=262150,inf=10000000;
int Case,_,n,m,cnt,i,j,ans;
int pt[N],post[N],s[N],w[N],val[N],lim[N],f[N];
int qa[N],qb[N],ca,cb;
int FLAG,bit[N],vis[N];
int mx[M],O,OFFSET;
struct P{int t,x,v;P(){}P(int _t,int _x,int _v){t=_t,x=_x,v=_v;}}a[N],b[N];
inline bool cmpa(const P&a,const P&b){return a.t==b.t?a.x<b.x:a.t<b.t;}
inline bool cmpb(const P&a,const P&b){
if(a.t-a.x!=b.t-b.x)return a.t-a.x<b.t-b.x;
return a.t+a.x<b.t+b.x;
}
inline bool cmpq(int x,int y){
return val[x]<val[y];
}
inline int lower(int x){
int l=1,r=m,mid,t;
while(l<=r)if(pt[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
return t;
}
inline void up(int&x,int y){x<y?(x=y):0;}
inline void add(int x,int p){for(;x<=m;x+=x&-x)if(vis[x]<FLAG)vis[x]=FLAG,bit[x]=p;else up(bit[x],p);}
inline void ask(int&t,int x){for(;x;x-=x&-x)if(vis[x]==FLAG)up(t,bit[x]);}
void build(int x,int a,int b){
if(a==b){
mx[x]=w[a];
return;
}
int mid=(a+b)>>1;
build(x<<1,a,mid);
build(x<<1|1,mid+1,b);
mx[x]=max(mx[x<<1],mx[x<<1|1]);
}
void getr(int x,int a,int b,int c){
if(c<=a){
if(mx[x]<OFFSET)return;
if(a==b){
O=a;
return;
}
}
int mid=(a+b)>>1;
if(c<=mid){
getr(x<<1,a,mid,c);
if(O)return;
}
getr(x<<1|1,mid+1,b,c);
}
inline void getlim(int x){
int offset=b[x].x+f[x]-b[x].t;
lim[x]=0;
int t=post[x];
if(w[t]>=offset)return;
O=0;
OFFSET=offset;
getr(1,1,m,t);
if(!O)O=m;
lim[x]=O;
}
void CDQ(int l,int r){
if(l==r){
if(b[l].t==0)up(f[l],0);
if(f[l]<=s[post[l]-1]-b[l].x)f[l]=-inf;
if(f[l]>=0){
f[l]+=b[l].v;
up(ans,f[l]);
getlim(l);
}
return;
}
int mid=(l+r)>>1;
CDQ(l,mid);
int i,j;
ca=cb=0;
for(i=l;i<=mid;i++)if(f[i]>=0&&lim[i])qa[++ca]=i;
for(i=r;i>mid;i--)qb[++cb]=i;
sort(qa+1,qa+ca+1,cmpq);
sort(qb+1,qb+cb+1,cmpq);
FLAG++;
for(i=j=1;i<=cb;i++){
while(j<=ca&&val[qa[j]]<=val[qb[i]]){
add(m-lim[qa[j]]+1,f[qa[j]]);
j++;
}
ask(f[qb[i]],m-post[qb[i]]+1);
}
CDQ(mid+1,r);
}
inline void solve(){
sort(a+1,a+m+1,cmpa);
for(cnt=0,i=1;i<=m;i=j){
for(j=i;j<=m&&a[i].t==a[j].t&&a[i].x==a[j].x;j++);
b[++cnt]=P(a[i].t,a[i].x,j-i);
if(b[cnt].t==0)b[cnt].v=0;
}
sort(b+1,b+cnt+1,cmpb);
for(i=1;i<=cnt;i++)pt[i]=b[i].t;
sort(pt+1,pt+cnt+1);
for(m=0,i=1;i<=cnt;i++)if(i==1||pt[i]>pt[i-1])pt[++m]=pt[i];
for(i=1;i<=cnt;i++)post[i]=lower(b[i].t);
for(i=1;i<=m;i++)s[i]=0;
for(i=1;i<=cnt;i++)s[post[i]]+=b[i].v;
for(i=1;i<=m;i++)s[i]+=s[i-1];
for(i=1;i<=m;i++)w[i]=s[i]-pt[i];
for(i=1;i<=cnt;i++)f[i]=-inf,val[i]=b[i].t+b[i].x;
build(1,1,m);
CDQ(1,cnt);
}
int main(){
scanf("%d",&Case);
for(_=1;_<=Case;_++){
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)scanf("%d%d",&a[i].t,&a[i].x);
a[++m]=P(0,1,0);
ans=0;
if(m)solve();
printf("Case #%d: %d\n",_,ans);
}
}

  

FZU2279 : Cantonese的更多相关文章

  1. 粵語/廣東話/Cantonese 資料/Material

    一.粵語歌詞網 1.海闊天空(粵語) 歌詞 今天我 寒夜裡看雪飄過 gam1 tin1 ngo5 hon4 je6 leoi5 hon3 syut3 piu1 gwo3 懷著冷卻了的心窩漂遠方 waa ...

  2. [No00007E]2016-面经[中]

    目录: 写一份动人简历的九个步奏 英文简历必备的十大元素 写一份动人简历的九个步骤 写一份动人的简历可以算得上是找工作最难的部分之一,但是,通过下面九步,这件事不再那么难了. 简历定位.雇主们之所以花 ...

  3. So many many foods here!

    水果类(fruits):西红柿 tomato 菠萝 pineapple 西瓜watermelon 香蕉banana 柚子 shaddock (pomelo) 橙子orange 苹果apple 柠檬le ...

  4. Diet

    Dialogue 1   Healthy diet 关于健康饮食 F:Bob, look at this sentence. 'Healthy eating is not about strict n ...

  5. Linux 安装ibus极点五笔输入法备忘录

    Linux 安装 ibus 五笔输入法备忘录 useful?: https://github.com/definite/ibus-table-chinese 一. yum install ibus* ...

  6. SQL-三级分类查询

    /*SQLyog 企业版 - MySQL GUI v8.14 MySQL - 5.5.40 : Database - appinfodb******************************** ...

  7. From missionary to firebrand--Eisle Tu [20160102]

    From missionary to firebrand   杜叶锡恩(1913年(癸丑年)-2015年(乙未年),英文名字Elsie Hume Elliot Tu,丈夫是教育家杜学魁.她是香港著名的 ...

  8. TTS 文字转语音 ekho

    1.源码下载 使用svn客户端,执行如下命令下载 svn co https://svn.code.sf.net/p/e-guidedog/code/ 2.官方网站查看说明 http://www.egu ...

  9. Heroku + Node.js + HTTPS

    昨天把 biz-to-me 升级到支持 HTTPS 了,为此研究了一下如何让 Heroku 上跑的 Node.js 应用支持 HTTPS.我发现并没有任何文章描述这个具体的流程,只有零碎的信息,所以在 ...

随机推荐

  1. caffe关闭建立网络的log输出

    C++ google::InitGoogleLogging("XXX"); google::SetCommandLineOption("GLOG_minloglevel& ...

  2. 【C++ Primer | 15】继承的构造函数

    继承的构造函数 子类为完成基类初始化,在C++11之前,需要在初始化列表调用基类的构造函数,从而完成构造函数的传递.如果基类拥有多个构造函数,那么子类也需要实现多个与基类构造函数对应的构造函数. cl ...

  3. 挂在光盘出现写保护mount: block device /dev/sr0 is write-protected, mounting read-only

    https://blog.csdn.net/yueludanfeng/article/details/60339688

  4. vector的 []

    摘自<C++编程剖析> #include <iostream> #include <vector> using namespace std; int main() ...

  5. 【CF446D】DZY Loves Games

    题解: 不错的题目 首先要求的黑点个数非常多 比较容易想到矩阵乘法 于是我们可以求出从某个黑点出发到任意一个黑点之间的概率 发现不同出发点带来的变化只有常数项 于是我们可以预处理出从每个方程转移的系数 ...

  6. noip2012

    题解: 闲着无聊做了一遍noip2012 我觉得出题出的好奇怪啊... 为什么两道倍增两道二分答案??? 两天第一题: 第一天第一题傻逼普及组题没什么好说的了 第二天第一题你会扩欧就秒了 两天第二题: ...

  7. python sqlite3查看数据库所有表(table)

    #coding:utf-8 import sqlite3 ''' sqlite3存在系统表sqlite_master,结构如下: sqlite_master( type TEXT,      #类型: ...

  8. nginx与php-fpm通信的两种方式

    简述 在linux中,nginx服务器和php-fpm可以通过tcp socket和unix socket两种方式实现. unix socket是一种终端,可以使同一台操作系统上的两个或多个进程进行数 ...

  9. 使用ycsb对hbase1.4.9 benchmark

    Ycsb下载地址:https://github.com/brianfrankcooper/YCSB/releases 目前测试hbase1.4.9,因此下载ycsb-hbase14-binding-0 ...

  10. AtCoder Regular Contest 102 (ARC102) E - Stop. Otherwise... 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARD102E.html 题目传送门 - ARC102E 题意 有 $n$ 个取值为 $[1,k]$ 的骰子,对于 ...