uva 10061(数学)
题解:题目要在b进制下输出的是一个数字阶乘后有多少个零,然后输出一共同拥有多少位。首先计算位数,log(n)/log(b) + 1就是n在b进制下有多少位,而log有个公式就是log(M×N) = logM + logN,n! 的位数用公式能够化为( log(1) + log(2) +...+log(n) ) / log(b) + 1。为了精确再加 10^-6。阶乘后的零的数量计算是依据进制数的最大质因数和其数量确定的,比方10
= 2 × 5。所以10进制的最大质因数是5,数量是num = 1,比如100!中的全部因子除五,能分解出来因子5的数量的和再除num就得到了后导0的数量24。
#include <cstdio>
#include <cmath>
using namespace std; int find(int n, int b) {
int max = -1;//寻找最大质因数
int flag1 = 1;//最大质因数数量
for (int i = 2; i <= b; i++) {
while (b % i == 0) {
b = b / i;
if (max < i) {
max = i;
flag1 = 1;
}
else if (max == i)
flag1++;
}
}
int flag2 = 0;//能分解出来的最大质因数的数量
int temp;
for (int i = 1; i <= n; i++) {
temp = i;
while (temp % max == 0) {
temp /= max;
flag2++;
}
}
flag2 = flag2 / flag1;
return flag2;
} int main() {
int n;
int b, flag, len;
double l;
while (scanf("%d%d", &n, &b) != EOF) {
flag = l = 0;
for (int i = 1; i <= n; i++)
l += log(i);
len = l / log(b) + 1e-6;
flag = find(n, b);
printf("%d %d\n", flag, len + 1);
}
return 0;
}
uva 10061(数学)的更多相关文章
- UVA - 11181 数学
UVA - 11181 题意: n个人去买东西,其中第i个人买东西的概率是p[i],最后只有r个人买了东西,求每个人实际买了东西的概率 代码: //在r个人买东西的概率下每个人买了东西的概率,这是条件 ...
- UVA - 1262 数学
UVA - 1262 题意: 有两个6*5 的大写字母组成的矩阵,需要找出满足条件的字典序第k小的密码:密码中每个字母在两个矩阵的对应的同一列中都出现过 代码: // 先处理出来每一列可以取的字母,例 ...
- uva 11762 数学期望+记忆化搜索
题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公 ...
- UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)
题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k. k暂时不用直接转成b进制. (1 ...
- UVa 10943 (数学 递推) How do you add?
将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...
- uva 10061 How many zero's and how many digits ?
How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...
- uva 568(数学)
题解:从1開始乘到n,由于结果仅仅要最后一位.所以每乘完一次,仅仅要保留后5位(少了值会不准确,刚開始仅仅保留了一位.结果到15就错了,保留多了int会溢出,比方3125就会出错) 和下一个数相乘,接 ...
- How many zero's and how many digits ? UVA - 10061
Given a decimal integer number you will have to find out how many trailing zeros will be there in it ...
- GCD - Extreme (II) UVA - 11426 数学
Given the value of N , you will have to nd the value of G . The de nition of G is given below: G = i ...
随机推荐
- POJ2576 Tug of War 二维背包
题目大意 一群人拔河,给出每个人的重量,要求两队人数之差不超过1人,且每队总重量之差最小. 思路 选出严格总人数一半(或+1)的人为一队,在该队重量不超过所有人总重量一半的情况下,使其重量最大. 人数 ...
- Eclipse开启代码自动提示功能
Eclipse代码里面的代码提示功能默认是关闭的,只有输入“.”的时候才会提示功能,用vs的用户可能不太习惯 这种,vs是输入任何字母都会提示,下面说一下如何修改eclipse配置,开启代码自动提示功 ...
- ROS单线多拨pppoe
#设置内网IP地址 / ip add add interface=ether1 address=192.168.0.254/255.255.255.0 #设置共享上网 / ip firewall na ...
- js重定向
在现行的网站应用中URL重定向的应用有很多: 404页面处理.网址改变(t.sina转到weibo.com).多个网站地址(如:http://www.google.com/ .www.g.cn )等: ...
- 最详细的CentOS 6与7对比(二):服务管理对比
本主题将从3个角度进行对比 常见设置(CentOS 6 vs CentOS 7) 服务管理(Sysvinit vs Upstart vs Systemd) 性能测试(cpu/mem/io/oltp) ...
- computed与methods的异同
在vue.js中,有methods和computed两种方式来动态当作方法来用的 如下: 两种方式在这种情况下的结果是一样的 写法上的区别是computed计算属性的方式在用属性时不用加(),而met ...
- Redux入门
Redux入门 本文转载自:众成翻译 译者:miaoYu 链接:http://www.zcfy.cc/article/4728 原文:https://bumbu.github.io/simple-re ...
- javascript中作用域
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [ Database ] [ SQL Server ] SQL Server 很多不允許的操作解決方法
說明可參考 https://blog.miniasp.com/post/2012/10/26/SQL-Server-Management-Studio-Prevent-saving-changes-t ...
- BigDecimal,注解
BigDecimal 问题重现 今天在干活的途中,发现一个很坑爹的问题,让我来复现下问题: 从上游接口获得的余额,对于为0的,做了判断 BigDecimal a = new BigDecimal(ac ...