http://poj.org/problem?id=1470

Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 20830   Accepted: 6617

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

 
LCA ,,(多组数据、)
 #include <algorithm>
#include <cstring>
#include <cstdio> using namespace std; const int N(2e5+);
int n,m,cnt;
int ans[N]; int head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):
v(v),next(next){}
}edge[N<<];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
} int son[N],size[N],deep[N],top[N],dad[N],fa[N];
void DFS(int u,int fa,int deepth)
{
size[u]=;
dad[u]=fa;
deep[u]=deepth;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]==v) continue;
DFS(v,u,deepth+);
size[u]+=size[v];
if(size[son[u]]<size[v]) son[u]=v;
}
}
void DFS_(int u,int Top)
{
top[u]=Top;
if(son[u]) DFS_(son[u],Top);
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]!=v&&son[u]!=v) DFS_(v,v);
}
}
int LCA(int x,int y)
{
for(;top[x]!=top[y];x=dad[top[x]])
if(deep[top[x]]<deep[top[y]]) swap(x,y);
return deep[x]<deep[y]?x:y;
} inline void init()
{
sumedge=;
memset(fa,,sizeof(fa));
memset(dad,,sizeof(dad));
memset(top,,sizeof(top));
memset(son,,sizeof(son));
memset(ans,,sizeof(ans));
memset(size,,sizeof(size));
memset(head,,sizeof(head));
memset(edge,,sizeof(edge));
memset(deep,,sizeof(deep));
} inline void read(int &x)
{
x=;register char ch=getchar();
for(;ch<''||ch>'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
} int main()
{
for(int t;~scanf("%d",&t);init())
{
n=t;
for(int u,v,nn;t--;)
{
read(u);
read(nn);
for(int i=;i<=nn;i++)
{
read(v);
fa[v]=u;
ins(u,v);
ins(v,u);
}
}
int root=;
for(;root<=n;root++)
if(!fa[root]) break;
DFS(root,,);
DFS_(root,root);
read(m);
for(int u,v;m--;)
{
read(u),read(v);
ans[LCA(u,v)]++;
}
for(int i=;i<=n;i++)
if(ans[i]) printf("%d:%d\n",i,ans[i]);
}
return ;
}

POJ——T 1470 Closest Common Ancestors的更多相关文章

  1. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  2. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  3. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  4. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  5. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  6. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

  7. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  8. POJ 1470 Closest Common Ancestors【近期公共祖先LCA】

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013912596/article/details/35311489 题目链接:http://poj ...

  9. POJ 1470 Closest Common Ancestors【LCA Tarjan】

    题目链接: http://poj.org/problem?id=1470 题意: 给定若干有向边,构成有根数,给定若干查询,求每个查询的结点的LCA出现次数. 分析: 还是很裸的tarjan的LCA. ...

随机推荐

  1. lsof 命令简介

    losf 命令可以列出某个进程打开的所有文件信息.打开的文件可能是普通的文件,目录,NFS文件,块文件,字符文件,共享库,常规管道,明明管道,符号链接,Socket流,网络Socket,UNIX域So ...

  2. 关于JavaScript中this的指向,你知晓几分?请速来围观!

    ---恢复内容开始--- 一.this是什么东东? this是指包含它的函数作为方法被调用时所属的对象.这句话理解起来跟卵一样看不懂,但是如果你把它拆分开来变成这三句话后就好理解一点了. 1.包含它的 ...

  3. php>$_SERVER服务的一些常用命令

    $_SERVER['REMOTE_ADDR'] //当前用户 IP . $_SERVER['REMOTE_HOST'] //当前用户主机名   $_SERVER['REQUEST_URI'] //UR ...

  4. [codevs3955]最长严格上升子序列(加强版)

    题目大意:给你一个序列,要你求该序列中最长严格上升子序列的长度. 解题思路:此题算是一道LIS模板题.普通的$O(n^2)$的LIS是会TLE的,因为$n\le 1000000$,所以此题要用单调队列 ...

  5. spring中IOC的简单使用

    spring的ioc主要就是依赖注入,有基于构造器的依赖注入还有通过设值注入,这里我只简单的实现设值注入的方法,通过spring的依赖管理,我们可以很方便的了解各层之间的依赖关系,降低了各层之间的耦合 ...

  6. python如何命令行下载包

    $ wget https://bootstrap.pypa.io/get-pip.py $ python get-pip.py $ pip -V #查看pip版本     $ pip install ...

  7. max带来的冲突

    题目要求: /* * Copyright (c) 2014, 烟台大学计算机学院 * All rights reserved. * 文件名:sum123.cpp * 作 者:林海云 * 完毕日期:20 ...

  8. c++_benchMark_vector_list_deque

    title: c++_benchMark_vector_list_deque date: 2015-08-01 22:32:39 作者:titer1 + ZhangYu 出处:www.drysalte ...

  9. POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

    POJ 3207 Ikki's Story IV - Panda's Trick id=3207" target="_blank" style=""& ...

  10. 检测浏览器是否支持range

    昨天的滑块建立在Input range这个基础上  这是IOS5.0及以后才支持的,而且在android2.3以下表现也不对 昨天的检测方式 var input = document.createEl ...