POJ2689 Prime Distance 质数筛选
题目大意
求区间[L, R]中距离最大和最小的两对相邻质数。R<2^31, R-L<1e6。
总体思路
本题数据很大。求sqrt(R)的所有质数,用这些质数乘以j, j+1, j+2...k(j和k使得积属于[L,R])筛选出[L,R]中的合数,然后在[L,R]的质数中得到所求。
筛法求质数
为在O(n)的时间复杂度中求得质数,我们要使筛选时每个可能为质数的数只访问一次。我们用v[i]表示i的最小质因数。每次循环到i时,假设v[i]和小于i的质数都已经在前面求出来了,若v[i]==0,则i是个质数。然后对于每个不大于v[i]的已知质数p,令v[i*p]=p。
不漏
证明:若i+1是个合数,则在处理i+1以前v[i+1]便已知。i+1必然可以化为若干个质数的积,记此质数的集合为P其中最小的质数为a,剩余质数的积为x。显然a<=x<=i。i之前循环到x时,a必然存在于已经求出的质数集合当中(因为a<=x),且a不大于v[x](因为a是P中最小的)。所以一定能由a*x得到i+1。
不重
证明:如果不要求p<=v[i],则值p*i会重复计算若v[i]<=p<=i,则在i循环之前必会循环到p,那个时候就把v[i]*p给算了。
注意
- 本题中质数是从2开始的。
- [L,R]质数中找所求时,避免1的出现,不能直接改循环初始条件。
- 筛选合数时,j至少为2,否则素数乘以1还是素数,我们却把它设成合数了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdarg>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f, MAX_RANGE = 1000010, MAX_SQRT_N = 1 << 16;
#define LOOP(i, n) for(int i=0; i<n; i++)
#define LoopFrom(i, l, r) for(int i=l; i<r; i++)
#define LoopDown(i, n) for(int i=n-1; i>=0; i--) int GetPrime(int *ans, int n)
{
static int v[MAX_SQRT_N];
memset(v, 0, sizeof(v));
int ansCnt = 0;
LoopFrom(i, 2, n + 1)
{
if (!v[i])
{
ans[ansCnt++] = i;
v[i] = i;
}
for (int j = 0; j < ansCnt && ans[j] <= v[i] && ans[j] <= n/i; j++)
v[ans[j] * i] = ans[j];
}
return ansCnt;
} void Proceed(int l, int r)
{
static int a[MAX_SQRT_N];
static bool IsPrime[MAX_RANGE];
memset(a, 0, sizeof(a));
memset(IsPrime, false, sizeof(IsPrime));
LOOP(i, r - l + 1)
IsPrime[i] = true;
int len = GetPrime(a, sqrt((double)r)+0.5);
LOOP(i, len)
LoopFrom(j, max((l / a[i])*a[i] < l ? l / a[i] + 1 : l / a[i], 2), r / a[i] + 1)
IsPrime[a[i] * j - l] = false;
int minDist = INF, maxDist = 0, prev = -1;
int c1=0, c2=INF, d1=0, d2=-INF;
LoopFrom(i, 0, r - l + 1)
{
if (IsPrime[i] && i+l>1)
{
if (prev == -1)
{
prev = i;
continue;
}
if (i - prev < c2 - c1)
{
c1 = prev;
c2 = i;
}
if (i - prev > d2 - d1)
{
d1 = prev;
d2 = i;
}
prev = i;
}
}
if (c2 == INF)
printf("There are no adjacent primes.\n");
else
printf("%d,%d are closest, %d,%d are most distant.\n", c1+l, c2+l, d1+l, d2+l);
} int main()
{
int l, r;
while (~scanf("%d%d", &l, &r))
Proceed(l, r);
return 0;
}
筛法求质数2
void GetPrime(int *prime, int n)
{
static bool NotPrime[MAX_N];
memset(NotPrime,false,sizeof(NotPrime));
int primeCnt=0;
for(int i=2; i<=n; j++)
{
if(!NotPrime[i])
prime[primeCnt++]=i;
for(int j=0; j<primeCnt; j++)
{
if(i*prime[j]>N)
break;
NotPrime[i*prime[j]]=true;
if(i%prime[j]==0)
break;
}
}
}
不重
原则:对于一个数n都由它的最小质因数p和某一个数i相乘得到。
n的最小质因数只有1个,所以n只被访问了一次。
不漏
证明:对于n=p*i,p是n的最小质因数,当外层循环到当前i时,p一定会在循环j时被访问到。
因为n的质因数集合包含i的质因数集合,所以p小于等于i的最小质因数,而循环到当前i时,所有小于i的质数都求出来了,包含着i的最小质因数,故命题成立。
POJ2689 Prime Distance 质数筛选的更多相关文章
- POJ2689 - Prime Distance(素数筛选)
题目大意 给定两个数L和U,要求你求出在区间[L, U] 内所有素数中,相邻两个素数差值最小的两个素数C1和C2以及相邻两个素数差值最大的两个素数D1和D2,并且L-U<1,000,000 题解 ...
- POJ2689 Prime Distance(数论:素数筛选模板)
题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...
- ZOJ 1842 Prime Distance(素数筛选法2次使用)
Prime Distance Time Limit: 2 Seconds Memory Limit: 65536 KB The branch of mathematics called nu ...
- 解题报告:poj2689 Prime Distance
2017-10-03 11:29:20 writer:pprp 来源:kuangbin模板 从已经筛选好的素数中筛选出规定区间的素数 /* *prime DIstance *给出一个区间[L,U],找 ...
- POJ-2689 Prime Distance (两重筛素数,区间平移)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13961 Accepted: 3725 D ...
- POJ-2689 Prime Distance,区间素数筛法
Prime Distance 只会埃氏筛法的弱鸡今天读了读挑战程序设计120页,明白了求小区间内素数的方 ...
- poj 2689 Prime Distance(区间筛选素数)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9944 Accepted: 2677 De ...
- poj2689 Prime Distance题解报告
题目戳这里 [题目大意] 给定一个区间[L,R],求区间内的质数相邻两个距离最大和最小的. [思路分析] 其实很简单呀,很明显可以看出来是数论题,有关于质数的知识. 要注意一下的就是L和R的数据范围都 ...
- POJ2689:Prime Distance(大数区间素数筛)
The branch of mathematics called number theory is about properties of numbers. One of the areas that ...
随机推荐
- Selenium获取input值的两种方法:WebElement.getAttribute("value")和WebElement.getText()
在页面元素的定位中,有时候需要获取到元素的页面显示值,用来作为断言.例如,我需要获取email的值"amy1111@xxx.com". <input class=" ...
- AFN请求后台返回数据为NSInlineData类型的处理
在利用AFN进行数据解析时出现返回数据为 <7b227374 61747573 223a302c 226d6573 73616765 223a22e6 82a8e79a 84e6898b e69 ...
- 上传预览图片的插件jquery-fileupload
上传预览图片的插件jquery-fileupload github地址:https://github.com/blueimp/jQuery-File-Upload 中文文档:http://www.jq ...
- 使用 CSS 追踪用户
原文地址:Crooked Style Sheets 作者:jbtronics 除了使用 JS 追踪用户,现在有人提出了还可以使用 CSS 进行网页追踪和分析,译者认为,这种方式更为 优雅,更为 简洁, ...
- 2C课程笔记分享_StudyJams_2017
课程2C-实践:创建交互式应用 概述 课程2C的内容主要是练习巩固2A.2B中讲解的内容,并设计实现一款篮球比赛的计分板应用及其界面的美化. Warm-Up:准备活动 新建项目PracticeSet2 ...
- Assembly之example
Here is a simple example by assembly language. It is based on openMSP430. Very important is to under ...
- Deutsch lernen (05)
1. die Wahrheit, -en 真理: - 真言,实情 Wir sollen die Wahrheit festhalten. 坚持:紧握 Im Wein liegt Wahrheit. ...
- token的问题汇总
token的作用:认证.授权: 生成:随机码.时间戳.用户 设备 合成: 验证:是否存在.合成验证: 管理:有效期(服务器存储时间or cookie存储过期时间).展期. token生成:或者和用户信 ...
- GET 请求控制器 返回绑定后HTML
//$.get("/Home/index/" + $("#S_BookName").val(), function (data) { //MVC控制器返回Vie ...
- Mysql 设置起始值
alter table t_tszj_pet_activity AUTO_INCREMENT=10000; 设置 id 从10000 开始