POJ2029:Get Many Persimmon Trees(二维树状数组)
Description
grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also
a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible
in the estate given by the lord.
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded
by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted
line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.
Input
N
W H
x1 y1
x2 y2
...
xN yN
S T
N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <=
N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees
are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.
The end of the input is indicated by a line that solely contains a zero.
Output
Sample Input
16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0
Sample Output
4
3
Source
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; int c[N][N],n,m,cnt,s,t; int sum(int x,int y)
{
int ret = 0;
int i,j;
for(i = x;i>=1;i-=lowbit(i))
{
for(j = y;j>=1;j-=lowbit(j))
{
ret+=c[i][j];
}
}
return ret;
} void add(int x,int y,int d)
{
int i,j;
for(i = x;i<=n;i+=lowbit(i))
{
for(j = y;j<=m;j+=lowbit(j))
{
c[i][j]+=d;
}
}
} int main()
{
int i,j,x,y,ans;
while(~scanf("%d",&cnt),cnt)
{
ans = 0;
scanf("%d%d",&n,&m);
MEM(c,0);
for(i = 1;i<=cnt;i++)
{
scanf("%d%d",&x,&y);
add(x,y,1);
}
scanf("%d%d",&s,&t);
for(i = 1;i<=n;i++)
{
for(j = 1;j<=m;j++)
{
int x1 = i,y1 = j,x2 = x1+s-1,y2 = y1+t-1;
if(x2>n || y2>m) continue;
int s = sum(x2,y2)+sum(x1-1,y1-1)-sum(x2,y1-1)-sum(x1-1,y2);
ans = max(ans,s);
}
}
printf("%d\n",ans);
} return 0;
}
POJ2029:Get Many Persimmon Trees(二维树状数组)的更多相关文章
- POJ 2029 Get Many Persimmon Trees (二维树状数组)
Get Many Persimmon Trees Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I ...
- POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)
题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...
- POJ 2029 Get Many Persimmon Trees (模板题)【二维树状数组】
<题目链接> 题目大意: 给你一个H*W的矩阵,再告诉你有n个坐标有点,问你一个w*h的小矩阵最多能够包括多少个点. 解题分析:二维树状数组模板题. #include <cstdio ...
- Get Many Persimmon Trees_枚举&&二维树状数组
Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...
- 二维树状数组 BZOJ 1452 [JSOI2009]Count
题目链接 裸二维树状数组 #include <bits/stdc++.h> const int N = 305; struct BIT_2D { int c[105][N][N], n, ...
- HDU1559 最大子矩阵 (二维树状数组)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1559 最大子矩阵 Time Limit: 30000/10000 MS (Java/Others) ...
- POJMatrix(二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 22058 Accepted: 8219 Descripti ...
- poj 1195:Mobile phones(二维树状数组,矩阵求和)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 14489 Accepted: 6735 De ...
- Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*
D. Iahub and Xors Iahub does not like background stories, so he'll tell you exactly what this prob ...
随机推荐
- 【Redis实现运行状态下切换RDB备份至AOF备份】
redis持久化方式有哪些?又有何区别? rdb:基于快照的持久化,速度更快,一般用作备份,主从复制也是依赖于rdb持久化功能. aof:以追加的方式记录redis操作日志的文件,可最大程度的保证re ...
- 【Henu ACM Round#16 B】 Bear and Colors
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] O(n^2)枚举每一个区间. 然后维护这个区间里面的"统治数字"是什么. 对于每个区间cnt[统治数字]++; ...
- Spring MVC 转发和重定向
本文介绍Spring MVC中转发和重定向的区别. 转发和重定向 开始Java EE时,可能会对转发(forward)和重定向(redirect)这个两个概念不清楚.本文先通过代码实例和运行结果图片感 ...
- 洛谷——P1043 数字游戏
https://www.luogu.org/problem/show?pid=1043 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要 ...
- [Python] Execute a Python Script
Python scripts can be executed by passing the script name to the python command or created as execut ...
- IT痴汉的工作现状41-亲历招投标
2015年9月3日早7点,复兴门外大街已是车水马龙.伟仔早早的从东直门赶到这里.呼吸着首都特有的雾气,回味着昨晚与齐天的那一顿簋街麻小,想象着今天的大场面,心中不免有一丝紧张. 今天是个重要的日子,是 ...
- LintCode 二叉树的遍历 (非递归)
前序: class Solution { public: /** * @param root: The root of binary tree. * @return: Preorder in vect ...
- 整理一些PHP开发安全问题
整理一些PHP开发安全问题 php给了开发人员极大的灵活性,可是这也为安全问题带来了潜在的隐患.最近须要总结一下以往的问题,在这里借翻译一篇文章同一时候加上自己开发的一些感触总结一下. 简单介绍 当开 ...
- BZOJ 1232 Kruskal
思路: 跟昨天的考试题特别像-.. 就是裸的Kruskal 把边权设为连接的两个点的点权之和加上边权*2 搞定 //By SiriusRen #include <cstdio> #incl ...
- ASP.NET Web.config学习
花了点时间整理了一下ASP.NET Web.config配置文件的基本使用方法.很适合新手参看,由于Web.config在使用很灵活,可以自定义一些节点.所以这里只介绍一些比较常用的节点. <? ...