洛谷P3807 【模板】卢卡斯定理exgcd
题目背景
这是一道模板题。
题目描述
给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105 )
求 C_{n+m}^{m}\ mod\ pCn+mm mod p
保证P为prime
C表示组合数。
一个测试点内包含多组数据。
输入输出格式
输入格式:
第一行一个整数T(T\le 10T≤10 ),表示数据组数
第二行开始共T行,每行三个数n m p,意义如上
输出格式:
共T行,每行一个整数表示答案。
Lucas定理这个东西就不细学了。
毕竟就一行代码,辣么好背
$\begin{pmatrix} n \\ m \end{pmatrix}modp=\begin{pmatrix} n & modp \\ m & modp \end{pmatrix}\ast \begin{pmatrix} \dfrac {n}{p} \\ \dfrac {m}{p} \end{pmatrix}modp$
输入输出样例
洛谷P3807 【模板】卢卡斯定理exgcd的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 洛谷 P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 题目背景 这是一道模板题. 题目描述 给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105) 求 C_{n+m}^{m}\ mod\ pCn+mm ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- wackoPicko 渗透平台的安装
2016-05-17 wackoPicko 的介绍及下载地址 https://github.com/adamdoupe/WackoPicko#from=codefrom.com 首先我们 ...
- 性能测试中的TPS与HPS
性能测试中的TPS与HPS TPS(Transaction per second) 是估算应用系统性能的重要依据.其意义是应用系统每秒钟处理完成的交易数量.一般的,评价系统性能均以每秒钟完成的技术交易 ...
- Vir-manager 创建虚拟机
- caioj 1158 欧拉函数
直接套模板,这道题貌似单独求还快一些 解法一 #include<cstdio> #include<cctype> #define REP(i, a, b) for(int i ...
- 【Henu ACM Round#24 A】k-String
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果是一个k-string的话. 考虑最后的串假设形式为sss..ss(k个s) 则s中出现的字母,整个串中最后出现的次数肯定为k的 ...
- nested exception is java.lang.NoClassDefFoundError: org/codehaus/jettison/json/JSONObject异常的解决办法
解决办法:你可以尝试添加一个jar包,因为我加入了一个jar包后错误问题成功解决. 将所需要的jettison-1.2.jar包复制到lib文件夹里面,重启项目,问题搞定.
- Java集合源代码剖析(一)【集合框架概述、ArrayList、LinkedList、Vector】
Java集合框架概述 Java集合工具包位于Java.util包下.包括了非常多经常使用的数据结构,如数组.链表.栈.队列.集合.哈希表等.学习Java集合框架下大致能够分为例如以下五个部分:List ...
- vim水平摆放全部窗体的三个方法
Method1: map <F7> <ESC>:windo exe "normal \<foobar<C-W>C-W>K"<C ...
- 使用client对象模型读取SharePoint列表数据
使用client对象模型读取SharePoint列表数据 client对象模型提供了强有力的方式.从远程client应用程序管理列表. 1. 管理员身份打开VS,新建项目Windows窗口应用程序,命 ...
- Django关于图片验证码显示笔记
.访问页面 /login/ - 内部需要创建一张图片,并且给用户返回 - 创建一个白板 Session存放验证码 .POST - 根据用户提交的数据与session里面比较 .登录界面 和 验证码 分 ...