Codeforces434D 网络流
思路:
题意:有n<=50个点,每个点有xi有[li, ri]种取值,-100 <= li <= ri <= 100,并且给定m<=100条边,每条边为u,v,d表示xu<=xv+d。
每个点value fi(x) = ai*x^2 + bi*x + ci。现在求一种合法的方案,使得权值和最大。
思路:先不考虑的xu<=xv + d。那么建图:
首先考虑到每个点的权值可能为负,并且求最大与最小割相反,
所以先 取反再+oo(一个很大的数),最后再减掉即可
对于每个点,拆成ri-li+1个点,
对于第k个点,node(k, i)表示第k个点值为i对应的标号
值为i-1跟i连一条边<node(k, i-1), node(k, i), oo - f(k, i)>的边,
S到第一个点连<S, node(k, l[k]), f(k, l[k])>
最后一个点到T连<node(k,r[k]), Inf>
那么很明显n*oo-最小割就是答案。。
但是如果有了限制条件xu<=xv + d,我们怎么把限制条件加到图上呢?
对于一对关系,xu<=xv+d
考虑到点u,如果node(u, i)到node(u,i+1)之间的边在割集里,那么说明xu=i+1
也就是说如果xv<xu-d是非法的,也就是说对于v在xu-d之前出现割是非法的。
那么我们可以连<node(u,i), node(v, i-d), Inf>的边,使得方案合法。。
from http://www.cnblogs.com/yzcstc/p/4062097.html
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 111
#define maxn 11111
#define M 88888
#define inf 0x3f3f3f3f
int n,m,a[N],b[N],c[N],l[N],r[N],id[N][N*2],cnt,maxx=-inf,ed=11100;
int first[maxn],vis[maxn],v[M],w[M],nxt[M],tot,U,V,D,jy,ans;
int func(int x,int y){return a[x]*y*y+b[x]*y+c[x];}
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,nxt[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,0);}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[0]=0;
queue<int>q;q.push(0);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=nxt[i])
if(w[i]&&vis[v[i]]==-1)
vis[v[i]]=vis[t]+1,q.push(v[i]);
}
return vis[ed]!=-1;
}
int zeng(int x,int y){
if(x==ed)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=nxt[i])
if(w[i]&&vis[v[i]]==vis[x]+1){
int t=zeng(v[i],min(w[i],y-r));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d%d%d",&a[i],&b[i],&c[i]);
for(int i=1;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
for(int j=l[i];j<=r[i];j++)
maxx=max(maxx,func(i,j));
}
maxx++;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;i++){
for(int j=l[i];j<=r[i]+1;j++)id[i][j+100]=++cnt;
for(int j=l[i];j<=r[i];j++)add(id[i][j+100],id[i][j+101],maxx-func(i,j));
add(0,id[i][l[i]+100],inf),add(id[i][r[i]+101],ed,inf);
}
for(int i=1;i<=m;i++) {
scanf("%d%d%d",&U,&V,&D);
for(int j=l[U];j<=r[U]+1;j++)
if(j-D>=l[V]&&j-D<=r[V]+1)add(id[U][j+100],id[V][j-D+100],inf);
}
while(tell())while(jy=zeng(0,inf))ans+=jy;
printf("%d\n",maxx*n-ans);
}
Codeforces434D 网络流的更多相关文章
- plain framework 1 网络流 缓存数据详解
网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...
- 网络流模板 NetworkFlow
身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...
- COGS732. [网络流24题] 试题库
«问题描述:假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法.«编程任务: ...
- ACM/ICPC 之 有流量上下界的网络流-Dinic(可做模板)(POJ2396)
//有流量上下界的网络流 //Time:47Ms Memory:1788K #include<iostream> #include<cstring> #include<c ...
- BZOJ 3144 [Hnoi2013]切糕 ——网络流
[题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...
- bzoj3572又TM是网络流
= =我承认我写网络流写疯了 = =我承认前面几篇博文都是扯淡,我写的是垃圾dinic(根本不叫dinic) = =我承认这道题我调了半天 = =我承认我这道题一开始是T的,后来换上真正的dinic才 ...
- hdu3549还是网络流
最后一次训练模板(比较熟练了) 接下来训练网络流的建图 #include <cstdio> #define INF 2147483647 int n,m,ans,x,y,z,M,h,t,T ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
- COGS743. [网络流24题] 最长k可重区间集
743. [网络流24题] 最长k可重区间集 ★★★ 输入文件:interv.in 输出文件:interv.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: «编 ...
随机推荐
- 国家人工智能(AI)的美好前景
在今年两会期间.李彦宏(Robin Lee,1968-)关于人工智能(AI)"国家优先"的提案,即所谓的"中国大脑"计划.依据何在?为什么? 近几年,世界互联网 ...
- Oracle字符乱码、数据越界訪问典型Bug分析
Oracle字符乱码.数据越界訪问典型Bug分析 前言: 作为乙方,在甲方客户那里验收阶段发现两个诡异Bug. 下面就问题来源.问题根因.解决方式.怎样避免做具体描写叙述. .且两 ...
- kqueue演示样例
网络server通常都使用epoll进行异步IO处理,而开发人员通常使用mac,为了方便开发.我把自己的handy库移植到了mac平台上. 移植过程中,网上竟然没有搜到kqueue的使用样例.让我吃惊 ...
- 关于Servo项目中Rust代码行数的数据来源
我两个月之前的一篇博客<为什么我说Rust是靠谱的编程语言>(下面简称原文),在当中"6. 两个半大型成功案例"一节.我以前写道: Servo: 下一代浏览器渲染引擎( ...
- Restful技术
一.概述 Restful技术是一种架构风格(Representational State Transfer)表现层状态转化,而不是一种编程标准. 之前前后端混在一起,前端通过mapping映射找到后端 ...
- Brute force Attack
1 Introduction A common threat that webdevelopers face is a password-guessing attack known as a brut ...
- 单片机: EEPROM和串口通信
名称:IIC协议 EEPROM24c02 通过串口通信存数读取数据 内容:此程序用于检測EEPROM性能,測试方法例如以下:写入24c02一个数据,然后在内存中改变这些数据. 掉电后主内存将失去这些信 ...
- bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)
1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...
- poj--3250--Bad Hair Day(模拟)
Bad Hair Day Time Limit: 2000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit ...
- [jzoj 5930] [NOIP2018模拟10.26】山花 解题报告 (质因数分类)
题目链接: http://172.16.0.132/senior/#contest/show/2538/2 题目: 小S决定从某一个节点$u$开始对其子树中与$u$距离小于$K$的节点代表的花树进行采 ...