思路:

题意:有n<=50个点,每个点有xi有[li, ri]种取值,-100 <= li <= ri <= 100,并且给定m<=100条边,每条边为u,v,d表示xu<=xv+d。

    每个点value fi(x) = ai*x^2 + bi*x + ci。现在求一种合法的方案,使得权值和最大。

思路:先不考虑的xu<=xv + d。那么建图:

   首先考虑到每个点的权值可能为负,并且求最大与最小割相反,

    所以先 取反再+oo(一个很大的数),最后再减掉即可

    对于每个点,拆成ri-li+1个点,

    对于第k个点,node(k, i)表示第k个点值为i对应的标号

    值为i-1跟i连一条边<node(k, i-1), node(k, i),  oo - f(k, i)>的边,

    S到第一个点连<S, node(k, l[k]), f(k, l[k])>

   最后一个点到T连<node(k,r[k]), Inf>

   那么很明显n*oo-最小割就是答案。。

   但是如果有了限制条件xu<=xv + d,我们怎么把限制条件加到图上呢?

   对于一对关系,xu<=xv+d

   考虑到点u,如果node(u, i)到node(u,i+1)之间的边在割集里,那么说明xu=i+1

   也就是说如果xv<xu-d是非法的,也就是说对于v在xu-d之前出现割是非法的。

   那么我们可以连<node(u,i), node(v, i-d), Inf>的边,使得方案合法。。

from http://www.cnblogs.com/yzcstc/p/4062097.html

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 111
#define maxn 11111
#define M 88888
#define inf 0x3f3f3f3f
int n,m,a[N],b[N],c[N],l[N],r[N],id[N][N*2],cnt,maxx=-inf,ed=11100;
int first[maxn],vis[maxn],v[M],w[M],nxt[M],tot,U,V,D,jy,ans;
int func(int x,int y){return a[x]*y*y+b[x]*y+c[x];}
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,nxt[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,0);}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[0]=0;
queue<int>q;q.push(0);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=nxt[i])
if(w[i]&&vis[v[i]]==-1)
vis[v[i]]=vis[t]+1,q.push(v[i]);
}
return vis[ed]!=-1;
}
int zeng(int x,int y){
if(x==ed)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=nxt[i])
if(w[i]&&vis[v[i]]==vis[x]+1){
int t=zeng(v[i],min(w[i],y-r));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d%d%d",&a[i],&b[i],&c[i]);
for(int i=1;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
for(int j=l[i];j<=r[i];j++)
maxx=max(maxx,func(i,j));
}
maxx++;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;i++){
for(int j=l[i];j<=r[i]+1;j++)id[i][j+100]=++cnt;
for(int j=l[i];j<=r[i];j++)add(id[i][j+100],id[i][j+101],maxx-func(i,j));
add(0,id[i][l[i]+100],inf),add(id[i][r[i]+101],ed,inf);
}
for(int i=1;i<=m;i++) {
scanf("%d%d%d",&U,&V,&D);
for(int j=l[U];j<=r[U]+1;j++)
if(j-D>=l[V]&&j-D<=r[V]+1)add(id[U][j+100],id[V][j-D+100],inf);
}
while(tell())while(jy=zeng(0,inf))ans+=jy;
printf("%d\n",maxx*n-ans);
}

Codeforces434D 网络流的更多相关文章

  1. plain framework 1 网络流 缓存数据详解

    网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...

  2. 网络流模板 NetworkFlow

    身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...

  3. COGS732. [网络流24题] 试题库

    «问题描述:假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法.«编程任务: ...

  4. ACM/ICPC 之 有流量上下界的网络流-Dinic(可做模板)(POJ2396)

    //有流量上下界的网络流 //Time:47Ms Memory:1788K #include<iostream> #include<cstring> #include<c ...

  5. BZOJ 3144 [Hnoi2013]切糕 ——网络流

    [题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...

  6. bzoj3572又TM是网络流

    = =我承认我写网络流写疯了 = =我承认前面几篇博文都是扯淡,我写的是垃圾dinic(根本不叫dinic) = =我承认这道题我调了半天 = =我承认我这道题一开始是T的,后来换上真正的dinic才 ...

  7. hdu3549还是网络流

    最后一次训练模板(比较熟练了) 接下来训练网络流的建图 #include <cstdio> #define INF 2147483647 int n,m,ans,x,y,z,M,h,t,T ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

随机推荐

  1. codeforces7D Palindrome Degree(manacher&amp;dp或Hsh&amp;dp)

    D. Palindrome Degree time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. Objective-C —内存管理(上)

    内存管理 一.为什么要进行内存管理 移动设备的内存极其有限,每个app所能占用的内存是有限制的 下列行为都会增加一个app的内存占用 创建一个OC对象 定义一个变量 调用一个函数或者方法 内存占用多大 ...

  3. Android setImageResource与setImageBitmap的区别

    同样的布局文件,小分辨率手机: 1.使用setImageBitmap设置时,出现如下现象: 2.使用setImageResource时,图片显示正常 原因:setImageResource(id)会根 ...

  4. 1806最大数 string和sort函数用法

    1.C++自带sort函数用法 sort函数有三个参数: (1)第一个是要排序的数组的起始地址 (2)第二个是结束的地址(最后一位要排序的地址) (3)第三个参数是排序的方法,可以是从大到小也可是从小 ...

  5. UVa 12545 Bits Equalizer【贪心】

    题意:给出两个等长的字符串,0可以变成1,?可以变成0和1,可以任意交换s中任意两个字符的位置,问从s变成t至少需要多少次操作 先可以画个草图 发现需要考虑的就是 1---0 0---1 ?---0 ...

  6. 51nod 1110 距离之和最小V3

    X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带 ...

  7. 关于VS2013 Browser Link 新功能

    今天小明在编写MVC项目,设计前端项目的时候,突然遇到一个问题,就是无论什么页面,当每次执行调试的时候,页面中都会自动的加上这样一行代码: <!-- Visual Studio Browser ...

  8. WordPress 自动草稿和文章修定版本

    写文章的时候发现 WordPress 有两个有意思的地方, WordPress 自动草稿和文章修定版本: 1.点击创建新文章的时候,会在数据库自动生成一条草稿数据: 2.修改数据的时候会将历史文章当做 ...

  9. 【jQuery05】通过按键 来切换 class

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. python登录注册改良版

    #在执行本脚本的时候,需要先注册,否则会报字符串不匹配sum=3while True: #如果条件为真,则一直循环 print("先注册,在登录") print("1.注 ...