<Sicily> Longest Common Subsequence
一、题目描述
Given a sequence A = < a1, a2, …, am >, let sequence B = < b1, b2, …, bk > be a subsequence of A if there exists a strictly increasing sequence ( i1 < i2 < i3 …, ik ) of indices of A such that for all j = 1,2,…,k, aij = bj. For example, B = < a, b, c, d > is a subsequence of A= < a, b, c, f, d, c > with index sequence < 1, 2, 3 ,5 >。
Given two sequences X and Y, you need to find the length of the longest common subsequence of X and Y.
二、输入
The input may contain several test cases.
The first line of each test case contains two integers N (the length of X) and M(the length of Y), The second line contains the sequence X, the third line contains the sequence Y, X and Y will be composed only from lowercase letters. (1<=N, M<=100)
Input is terminated by EOF.
三、输出
Output the length of the longest common subsequence of X and Y on a single line for each test case.
例如:
输入:
6 4
abcfdc
abcd
2 2
ab
cd
输出:
4
0
四、解题思路
这道题需要求的是最长公共子序列,典型的动态规划问题。
设序列1:X = < x1, x2, x3, …, xm>,子序列2:Y=< y1, y2, y3,…yn>。假如他们的最长公共子序列为Z=< z1, z2, z3,…zk>那么k就是我们需要求的长度。
由上面假设可以推出:
1)如果xm=yn,那么必有xm=yn=zk,且< x1,x2,x3,…xm-1>与< y1,y2,y3,…yn-1>的最长公共子序列为< z1, z2, z3,…zk-1>
2)如果xm!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm-1>与< y1, y2, y3,…yn>的最长公共子序列。
3)如果yn!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm>与< y1, y2, y3,…yn-1>的最长公共子序列。
由此可以逆推。于是有以下公式:
五、代码
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int strALeng, strBLeng;
while(cin >> strALeng >> strBLeng)
{
int charMatrix[101][101];
char charAAry[strALeng];
char charBAry[strBLeng];
for(int i = 0; i < strALeng; i++)
cin >> charAAry[i];
for(int i = 0; i < strBLeng; i++)
cin >> charBAry[i];
for(int i = 0; i < strALeng; i++)
charMatrix[i][0] = 0;
for(int i = 0; i < strBLeng; i++)
charMatrix[0][i] = 0;
for(int i = 1; i <= strALeng; i++)
{
for(int j = 1; j <= strBLeng; j++)
{
if(charAAry[i - 1] == charBAry[j - 1]) charMatrix[i][j] = charMatrix[i - 1][j - 1] + 1;
else charMatrix[i][j] = max(charMatrix[i][j-1], charMatrix[i - 1][j]);
}
}
cout << charMatrix[strALeng][strBLeng] << endl;
}
return 0;
}
<Sicily> Longest Common Subsequence的更多相关文章
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
- [UCSD白板题] Longest Common Subsequence of Three Sequences
Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- Longest Common Subsequence
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Longest Common Subsequence & Substring & prefix
Given two strings, find the longest common subsequence (LCS). Your code should return the length of ...
- Dynamic Programming | Set 4 (Longest Common Subsequence)
首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...
- Lintcode:Longest Common Subsequence 解题报告
Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...
- UVA 10405 Longest Common Subsequence (dp + LCS)
Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...
- [HackerRank] The Longest Common Subsequence
This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...
随机推荐
- Codeforces Round #286 (Div. 1) B. Mr. Kitayuta's Technology (强连通分量)
题目地址:http://codeforces.com/contest/506/problem/B 先用强连通判环.然后转化成无向图,找无向图连通块.若一个有n个点的块内有强连通环,那么须要n条边.即正 ...
- iOS开发之十万个为什么<1>
郝萌主倾心贡献,尊重作者的劳动成果,请勿转载. 假设文章对您有所帮助.欢迎给作者捐赠,支持郝萌主,捐赠数额任意,重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 游戏官方下 ...
- ThinkPHP5.0框架开发--第10章 TP5.0验证器
ThinkPHP5.0框架开发--第10章 TP5.0验证器 第10章 TP5.0验证器 ======================================= 今日学习 1.验证器 1) 控 ...
- Codeforces 676E The Last Fight Between Human and AI 规律
链接 Codeforces 676E The Last Fight Between Human and AI 题意 给一个多项式,有些系数不确定.人和机器轮流填系数,系数可以是任何数,问是否能使得最后 ...
- Kettle的四大不同环境工具
不多说,直接上干货! kettle里有不同工具,分别用于ETL的不同阶段. 初学者,建议送Spoon开始.高手,是四大工具都会用. Sqoop: 图形界面工具,快速设计和维护复杂的ETL工作流.集成开 ...
- Windows 10 10586 升级
- Java8新特性 利用流和Lambda表达式对List集合进行处理
Lambda表达式处理List 最近在做项目的过程中经常会接触到 lambda 表达式,随后发现它基本上可以替代所有 for 循环,包括增强for循环.也就是我认为,绝大部分的for循环都可以用 la ...
- HTML基础——网站友情链接显示页面
1.列表标签 有序列表:type默认是1,2,3……,reserved指降序排列 <ol type="I" start="" reversed=" ...
- [ Docker ] 映射資料夾
- docker run -v <host path>:<container path> - 例如:docker run -v /home/adrian/data:/data ...
- Linux停止tomcat运行
打开终端cd /java/tomcat#执行bin/startup.sh #启动tomcatbin/shutdown.sh #停止tomcattail -f logs/catalina.out #看t ...