一、题目描述

Given a sequence A = < a1, a2, …, am >, let sequence B = < b1, b2, …, bk > be a subsequence of A if there exists a strictly increasing sequence ( i1 < i2 < i3 …, ik ) of indices of A such that for all j = 1,2,…,k, aij = bj. For example, B = < a, b, c, d > is a subsequence of A= < a, b, c, f, d, c > with index sequence < 1, 2, 3 ,5 >。

Given two sequences X and Y, you need to find the length of the longest common subsequence of X and Y.

二、输入

The input may contain several test cases.

The first line of each test case contains two integers N (the length of X) and M(the length of Y), The second line contains the sequence X, the third line contains the sequence Y, X and Y will be composed only from lowercase letters. (1<=N, M<=100)

Input is terminated by EOF.

三、输出

Output the length of the longest common subsequence of X and Y on a single line for each test case.

例如:

输入:

6 4

abcfdc

abcd

2 2

ab

cd

输出:

4

0

四、解题思路

这道题需要求的是最长公共子序列,典型的动态规划问题。

设序列1:X = < x1, x2, x3, …, xm>,子序列2:Y=< y1, y2, y3,…yn>。假如他们的最长公共子序列为Z=< z1, z2, z3,…zk>那么k就是我们需要求的长度。

由上面假设可以推出:

1)如果xm=yn,那么必有xm=yn=zk,且< x1,x2,x3,…xm-1>与< y1,y2,y3,…yn-1>的最长公共子序列为< z1, z2, z3,…zk-1>

2)如果xm!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm-1>与< y1, y2, y3,…yn>的最长公共子序列。

3)如果yn!=zk,那么< z1, z2, z3,…zk>是< x1,x2,x3,…xm>与< y1, y2, y3,…yn-1>的最长公共子序列。

由此可以逆推。于是有以下公式:

五、代码

#include<iostream>
#include<math.h> using namespace std; int main()
{
int strALeng, strBLeng;
while(cin >> strALeng >> strBLeng)
{
int charMatrix[101][101]; char charAAry[strALeng];
char charBAry[strBLeng]; for(int i = 0; i < strALeng; i++)
cin >> charAAry[i]; for(int i = 0; i < strBLeng; i++)
cin >> charBAry[i]; for(int i = 0; i < strALeng; i++)
charMatrix[i][0] = 0; for(int i = 0; i < strBLeng; i++)
charMatrix[0][i] = 0; for(int i = 1; i <= strALeng; i++)
{
for(int j = 1; j <= strBLeng; j++)
{
if(charAAry[i - 1] == charBAry[j - 1]) charMatrix[i][j] = charMatrix[i - 1][j - 1] + 1;
else charMatrix[i][j] = max(charMatrix[i][j-1], charMatrix[i - 1][j]);
}
} cout << charMatrix[strALeng][strBLeng] << endl; } return 0;
}

<Sicily> Longest Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  7. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  8. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  9. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

  10. [HackerRank] The Longest Common Subsequence

    This is the classic LCS problem. Since it requires you to print one longest common subsequence, just ...

随机推荐

  1. Codeforces Round #286 (Div. 1) B. Mr. Kitayuta&#39;s Technology (强连通分量)

    题目地址:http://codeforces.com/contest/506/problem/B 先用强连通判环.然后转化成无向图,找无向图连通块.若一个有n个点的块内有强连通环,那么须要n条边.即正 ...

  2. iOS开发之十万个为什么&lt;1&gt;

    郝萌主倾心贡献,尊重作者的劳动成果,请勿转载. 假设文章对您有所帮助.欢迎给作者捐赠,支持郝萌主,捐赠数额任意,重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 游戏官方下 ...

  3. ThinkPHP5.0框架开发--第10章 TP5.0验证器

    ThinkPHP5.0框架开发--第10章 TP5.0验证器 第10章 TP5.0验证器 ======================================= 今日学习 1.验证器 1) 控 ...

  4. Codeforces 676E The Last Fight Between Human and AI 规律

    链接 Codeforces 676E The Last Fight Between Human and AI 题意 给一个多项式,有些系数不确定.人和机器轮流填系数,系数可以是任何数,问是否能使得最后 ...

  5. Kettle的四大不同环境工具

    不多说,直接上干货! kettle里有不同工具,分别用于ETL的不同阶段. 初学者,建议送Spoon开始.高手,是四大工具都会用. Sqoop: 图形界面工具,快速设计和维护复杂的ETL工作流.集成开 ...

  6. Windows 10 10586 升级

  7. Java8新特性 利用流和Lambda表达式对List集合进行处理

    Lambda表达式处理List 最近在做项目的过程中经常会接触到 lambda 表达式,随后发现它基本上可以替代所有 for 循环,包括增强for循环.也就是我认为,绝大部分的for循环都可以用 la ...

  8. HTML基础——网站友情链接显示页面

    1.列表标签 有序列表:type默认是1,2,3……,reserved指降序排列 <ol type="I" start="" reversed=" ...

  9. [ Docker ] 映射資料夾

    - docker run -v <host path>:<container path> - 例如:docker run -v /home/adrian/data:/data ...

  10. Linux停止tomcat运行

    打开终端cd /java/tomcat#执行bin/startup.sh #启动tomcatbin/shutdown.sh #停止tomcattail -f logs/catalina.out #看t ...