混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
所有代码例如以下!
def NDimensionGaussian(X_vector,U_Mean,CovarianceMatrix):
#X=numpy.mat(X_vector)
X=X_vector
D=numpy.shape(X)[0]
#U=numpy.mat(U_Mean)
U=U_Mean
#CM=numpy.mat(CovarianceMatrix)
CM=CovarianceMatrix
Y=X-U
temp=Y.transpose() * CM.I * Y
result=(1.0/((2*numpy.pi)**(D/2)))*(1.0/(numpy.linalg.det(CM)**0.5))*numpy.exp(-0.5*temp)
return result def CalMean(X):
D,N=numpy.shape(X)
MeanVector=numpy.mat(numpy.zeros((D,1)))
for d in range(D):
for n in range(N):
MeanVector[d,0] += X[d,n]
MeanVector[d,0] /= float(N)
return MeanVector def CalCovariance(X,MV):
D,N=numpy.shape(X)
CoV=numpy.mat(numpy.zeros((D,D)))
for n in range(N):
Temp=X[:,n]-MV
CoV += Temp*Temp.transpose()
CoV /= float(N)
return CoV def CalEnergy(Xn,Pik,Uk,Cov):
D,N=numpy.shape(Xn)
D_k,K=numpy.shape(Uk)
if D!=D_k:
print ('dimension not equal, break')
return energy=0.0
for n_iter in range(N):
temp=0
for k_iter in range(K):
temp += Pik[0,k_iter] * NDimensionGaussian(Xn[:,n_iter],Uk[:,k_iter],Cov[k_iter])
energy += numpy.log(temp)
return float(energy) def SequentialEMforMixGaussian(InputData,K):
#初始化piK
pi_Cof=numpy.mat(numpy.ones((1,K))*(1.0/float(K)))
X=numpy.mat(InputData)
X_mean=CalMean(X)
print (X_mean)
X_cov=CalCovariance(X,X_mean)
print (X_cov)
#初始化uK,当中第k列表示第k个高斯函数的均值向量
#X为D维,N个样本点
D,N=numpy.shape(X)
print (D,N)
UK=numpy.mat(numpy.zeros((D,K)))
for d_iter in range(D):
for k_iter in range(K):
UK[d_iter,k_iter] = X_mean[d_iter,0] + (-1)**k_iter + (-1)**d_iter
print (UK)
#初始化k个协方差矩阵的列表
List_cov=[] for k_iter in range(K):
List_cov.append(numpy.mat(numpy.eye(X[:,0].size)))
print (List_cov) List_cov_new=copy.deepcopy(List_cov)
rZnk=numpy.mat(numpy.zeros((N,K)))
denominator=numpy.mat(numpy.zeros((N,1)))
rZnk_new=numpy.mat(numpy.zeros((N,K))) Nk=0.5*numpy.mat(numpy.ones((1,K)))
print (Nk)
Nk_new=numpy.mat(numpy.zeros((1,K)))
UK_new=numpy.mat(numpy.zeros((D,K)))
pi_Cof_new=numpy.mat(numpy.zeros((1,K))) for n_iter in range(1,N):
#rZnk=pi_k*Gaussian(Xn|uk,Cov_k)/sum(pi_j*Gaussian(Xn|uj,Cov_j))
for k_iter in range(K):
rZnk_new[n_iter,k_iter] = pi_Cof[0,k_iter] * NDimensionGaussian(X[:,n_iter],UK[:,k_iter],List_cov[k_iter])
denominator[n_iter,0] += rZnk_new[n_iter,k_iter]
for k_iter in range(K):
rZnk_new[n_iter,k_iter] /= denominator[n_iter,0]
print ('rZnk_new', rZnk_new[n_iter,k_iter],'\n')
for k_iter in range(K):
Nk_new[0,k_iter] = Nk[0,k_iter] + rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter]
print ('Nk_new',Nk_new,'\n')
##############当前有(n_iter+1)样本###########################
pi_Cof_new[0,k_iter] = Nk_new[0,k_iter]/float(n_iter+1)
print ('pi_Cof_new',pi_Cof_new,'\n')
UK_new[:,k_iter] = UK[:,k_iter] + ( (rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter])/float(Nk_new[0,k_iter]) ) * (X[:,n_iter]-UK[:,k_iter])
print ('UK_new',UK_new,'\n')
Temp = X[:,n_iter] - UK_new[:,k_iter]
List_cov_new[k_iter] = List_cov[k_iter] + ((rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter])/float(Nk_new[0,k_iter]))*(Temp*Temp.transpose()-List_cov[k_iter])
print ('List_cov_new',List_cov_new,'\n') rZnk=copy.deepcopy(rZnk_new)
pi_Cof=copy.deepcopy(pi_Cof_new)
UK_new=copy.deepcopy(UK)
List_cov=copy.deepcopy(List_cov_new)
print (pi_Cof,UK_new,List_cov)
return pi_Cof,UK_new,List_cov def BatchEMforMixGaussian(InputData,K,MaxIter):
#初始化piK
pi_Cof=numpy.mat(numpy.ones((1,K))*(1.0/float(K)))
X=numpy.mat(InputData)
X_mean=CalMean(X)
print (X_mean)
X_cov=CalCovariance(X,X_mean)
print (X_cov)
#初始化uK,当中第k列表示第k个高斯函数的均值向量
#X为D维,N个样本点
D,N=numpy.shape(X)
print (D,N)
UK=numpy.mat(numpy.zeros((D,K)))
for d_iter in range(D):
for k_iter in range(K):
UK[d_iter,k_iter] = X_mean[d_iter,0] + (-1)**k_iter + (-1)**d_iter
print (UK)
#初始化k个协方差矩阵的列表
List_cov=[] for k_iter in range(K):
List_cov.append(numpy.mat(numpy.eye(X[:,0].size)))
print (List_cov) energy_new=0
energy_old=CalEnergy(X,pi_Cof,UK,List_cov)
print (energy_old)
currentIter=0
while True:
currentIter += 1 List_cov_new=[]
rZnk=numpy.mat(numpy.zeros((N,K)))
denominator=numpy.mat(numpy.zeros((N,1)))
Nk=numpy.mat(numpy.zeros((1,K)))
UK_new=numpy.mat(numpy.zeros((D,K)))
pi_new=numpy.mat(numpy.zeros((1,K))) #rZnk=pi_k*Gaussian(Xn|uk,Cov_k)/sum(pi_j*Gaussian(Xn|uj,Cov_j))
for n_iter in range(N):
for k_iter in range(K):
rZnk[n_iter,k_iter] = pi_Cof[0,k_iter] * NDimensionGaussian(X[:,n_iter],UK[:,k_iter],List_cov[k_iter])
denominator[n_iter,0] += rZnk[n_iter,k_iter]
for k_iter in range(K):
rZnk[n_iter,k_iter] /= denominator[n_iter,0]
#print 'rZnk', rZnk[n_iter,k_iter] #pi_new=sum(rZnk)
for k_iter in range(K):
for n_iter in range(N):
Nk[0,k_iter] += rZnk[n_iter,k_iter]
pi_new[0,k_iter] = Nk[0,k_iter]/(float(N))
#print 'pi_k_new',pi_new[0,k_iter] #uk_new= (1/sum(rZnk))*sum(rZnk*Xn)
for k_iter in range(K):
for n_iter in range(N):
UK_new[:,k_iter] += (1.0/float(Nk[0,k_iter]))*rZnk[n_iter,k_iter]*X[:,n_iter]
#print 'UK_new',UK_new[:,k_iter] for k_iter in range(K):
X_cov_new=numpy.mat(numpy.zeros((D,D)))
for n_iter in range(N):
Temp = X[:,n_iter] - UK_new[:,k_iter]
X_cov_new += (1.0/float(Nk[0,k_iter]))*rZnk[n_iter,k_iter] * Temp * Temp.transpose()
#print 'X_cov_new',X_cov_new
List_cov_new.append(X_cov_new) energy_new=CalEnergy(X,pi_new,UK_new,List_cov)
print ('energy_new',energy_new)
#print pi_new
#print UK_new
#print List_cov_new
if energy_old>=energy_new or currentIter>MaxIter:
UK=copy.deepcopy(UK_new)
pi_Cof=copy.deepcopy(pi_new)
List_cov=copy.deepcopy(List_cov_new)
break
else:
UK=copy.deepcopy(UK_new)
pi_Cof=copy.deepcopy(pi_new)
List_cov=copy.deepcopy(List_cov_new)
energy_old=energy_new return pi_Cof,UK,List_cov
混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码的更多相关文章
- PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...
- 混合高斯模型(Mixtures of Gaussians)和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- <转>与EM相关的两个算法-K-mean算法以及混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- EM相关两个算法 k-mean算法和混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- EM算法与混合高斯模型
非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非 ...
- 混合高斯模型(Mixtures of Gaussians)
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 这篇讨论使用期望最大化算法(Expectation-Maximizat ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
随机推荐
- Android 开源项目android-open-project解析之(二) GridView,ImageView,ProgressBar,TextView
五.GridView StaggeredGridView 同意非对齐行的GridView,类似Pinterest的瀑布流.而且跟ListView一样自带View缓存,继承自ViewGroup 项目地址 ...
- 2015.04.27,外语,读书笔记-《Word Power Made Easy》 12 “如何奉承朋友” SESSION 35
1.how to look 拉丁词根specto,to look的意思,是许多常见英文词语的来源,如spectacle(['spektәkl] n. 值得看的东西, 光景, 眼镜).spectator ...
- 客户端通过wcf来启动或者停止服务器上的windows service
1.设置服务器上的windows service的security,下面的命令只能用cmd.exe来运行(以管理员模式) sc sdset "LISA_43_Dev_Batch" ...
- [IOI 1998] Polygon
[题目链接] http://poj.org/problem?id=1179 [算法] 区间DP [代码] #include <algorithm> #include <bitset& ...
- python中数字的排序
lst = [2,22,4,7,18]for j in range(len(lst)): #记录内部排序的次数 i = 0 while i < len(lst)-1: if lst[i] > ...
- Python笔记(六)
# -*-coding:utf-8-*- # 模块 # 模块是一个Python文件,以.py结尾,能让你有逻辑的组织Python代码 # 可以通过import引入模块 import Course_5 ...
- DIV水平方向居中的几种方法
一.使用margin: 1 #center0 { 2 background: red; 3 margin: 0 auto; 4 } 或者: margin: auto; 这样的前提是父盒子里没有其他盒子 ...
- 查看md文件
使用命令将md文件转为html,在浏览器中演示 通过npm安装i5ting_toc 安装好node之后,可以直接使用npm.Windows+R打开运行框,输入cmd,打开命令窗口.连网的情况下,输入如 ...
- 关于idlf无法输入中文的解决办法
最近在学习python 但是刚开始写程序的时候发现无法输入中文 上网查发现有不少mac端的IDLF也存在这个问题 导致这个问题的原因可能不唯一 但是大多数原因应该是Mac 系统自带的 Tcl/Tk ...
- DB2load遇到SQL3508N错误
SQL3508N装入或装入查询期间,当存取类型为 "<文件类型>" 的文件或路径时出错.原因码:"<原因码>".路径:"< ...