疑问

  前面在函数篇里介绍了Go语言的函数是支持多返回值的。

  只要在函数体内,对返回值赋值,最后加上return就可以返回所有的返回值。

  最近在写代码的时候经常遇到在return后,还要在defer里面做一些收尾工作,比如事务的提交或回滚。所以想弄清楚这个return和defer到底是什么关系,它们谁先谁后,对于最后返回值又有什么影响呢?

动手验证

  了解下来,问题比我想的要复杂,不信你先看看下面这段代码输出结果是啥

package main

import "fmt"

func main()  {
fmt.Println("f1 result: ", f1())
fmt.Println("f2 result: ", f2())
} func f1() int {
var i int
defer func() {
i++
fmt.Println("f11: ", i)
}() defer func() {
i++
fmt.Println("f12: ", i)
}() i = 1000
return i
} func f2() (i int) {
defer func() {
i++
fmt.Println("f21: ", i)
}() defer func() {
i++
fmt.Println("f22: ", i)
}() i = 1000
return i
}

  

  最后的执行结果如下

f12: 1001
f11: 1002
f1 result: 1000
f22: 1001
f21: 1002
f2 result: 1002

  

f1函数:

  进入该函数,因为没有指定返回值变量,需要先声明i变量,因为是int类型,如果没有赋值,该变量初始化值为0,之后执行i=1000的赋值操作,然后执行return语句,返回i的值。

  真正返回之前还要执行defer函数部分,两个defer函数分别针对i进行自增操作,i的值依次为1001和1002

f2函数:

  进入该函数,因为已经定义好了返回值变量即为i,然后直接赋值i=1000,再返回i的值。

  同样的,也要在真正返回i前,执行两个defer函数,同样i依次自增得到1001和1002。

  问题的关键是为什么无名参数返回的值是1000,其并未收到defer函数对于i自增的影响;而有名函数在执行defer后,最后返回的i值为1002。

  网上找了一些原因,提到一个结论

原因就是return会将返回值先保存起来,对于无名返回值来说,
 保存在一个临时对象中,defer是看不到这个临时对象的;
 而对于有名返回值来说,就保存在已命名的变量中。

  看到这个结论,我想试试通过打印i的地址值是否可以看出一些端倪和线索

  为此在两个函数中添加了打印i的地址信息

package main

import "fmt"

func main()  {
fmt.Println("f1 result: ", f1())
fmt.Println("f2 result: ", f2())
} func f1() int {
var i int
fmt.Printf("i: %p \n", &i)
defer func() {
i++
fmt.Printf("i: %p \n", &i)
fmt.Println("f11: ", i)
}() defer func() {
i++
fmt.Printf("i: %p \n", &i)
fmt.Println("f12: ", i)
}() i = 1000
return i
} func f2() (i int) {
fmt.Printf("i: %p \n", &i)
defer func() {
i++
fmt.Printf("i: %p \n", &i)
fmt.Println("f21: ", i)
}() defer func() {
i++
fmt.Printf("i: %p \n", &i)
fmt.Println("f22: ", i)
}()
i = 1000
return i
}

  

  程序输出结果为

i: 0xc000090000
i: 0xc000090000
f12: 1001
i: 0xc000090000
f11: 1002
f1 result: 1000
i: 0xc00009a008
i: 0xc00009a008
f22: 1001
i: 0xc00009a008
f21: 1002
f2 result: 1002

  

  从这个结果可以看出,无论是f1还是f2函数中,变量i的地址全程没有改变过。

  所以对于上面这个结论我似乎懂了,但是还是有些模糊,return保存在一个临时对象中,defer看不到这个临时变量,但是i的值为什么能够在1000的基础上累加呢?

拨开云雾

  如果要从根本解决这个疑问,最好能够看看这段程序执行,背后的内存是如何分配的。

  这时候想到了前几天看书里提到的可以通过命令将go语言转为汇编语言。

  为了简化问题,将源代码修改为

package main

import "fmt"

func main()  {
fmt.Println("f1 result: ", f1())
fmt.Println("f2 result: ", f2())
} func f1() int {
var i int
defer func() {
i++
fmt.Println("f11: ", i)
}() i = 1000
return i
} func f2() (i int) {
defer func() {
i++
fmt.Println("f21: ", i)
}()
i = 1000
return i
}

  

  通过执行命令go tool compile -S test.go得到汇编代码如下

os.(*File).close STEXT dupok nosplit size=26 args=0x18 locals=0x0
...
0x0000 00000 (test.go:5) TEXT "".main(SB), ABIInternal, $136-0
0x0000 00000 (test.go:5) MOVQ (TLS), CX
0x0009 00009 (test.go:5) LEAQ -8(SP), AX
0x000e 00014 (test.go:5) CMPQ AX, 16(CX)
0x0012 00018 (test.go:5) JLS 315
0x0018 00024 (test.go:5) SUBQ $136, SP
0x001f 00031 (test.go:5) MOVQ BP, 128(SP)
0x0027 00039 (test.go:5) LEAQ 128(SP), BP
0x002f 00047 (test.go:5) FUNCDATA $0, gclocals·7d2d5fca80364273fb07d5820a76fef4(SB)
...
"".f1 STEXT size=145 args=0x8 locals=0x28
0x0000 00000 (test.go:10) TEXT "".f1(SB), ABIInternal, $40-8
0x0000 00000 (test.go:10) MOVQ (TLS), CX
0x0009 00009 (test.go:10) CMPQ SP, 16(CX)
0x000d 00013 (test.go:10) JLS 135
0x000f 00015 (test.go:10) SUBQ $40, SP
0x0013 00019 (test.go:10) MOVQ BP, 32(SP)
0x0018 00024 (test.go:10) LEAQ 32(SP), BP
0x001d 00029 (test.go:10) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:10) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:10) FUNCDATA $3, gclocals·9fb7f0986f647f17cb53dda1484e0f7a(SB)
0x001d 00029 (test.go:10) PCDATA $2, $0
0x001d 00029 (test.go:10) PCDATA $0, $0
0x001d 00029 (test.go:10) MOVQ $0, "".~r0+48(SP)
0x0026 00038 (test.go:11) MOVQ $0, "".i+24(SP)
0x002f 00047 (test.go:12) MOVL $8, (SP)
0x0036 00054 (test.go:12) PCDATA $2, $1
0x0036 00054 (test.go:12) LEAQ "".f1.func1·f(SB), AX
0x003d 00061 (test.go:12) PCDATA $2, $0
0x003d 00061 (test.go:12) MOVQ AX, 8(SP)
0x0042 00066 (test.go:12) PCDATA $2, $1
0x0042 00066 (test.go:12) LEAQ "".i+24(SP), AX
0x0047 00071 (test.go:12) PCDATA $2, $0
0x0047 00071 (test.go:12) MOVQ AX, 16(SP)
0x004c 00076 (test.go:12) CALL runtime.deferproc(SB)
0x0051 00081 (test.go:12) TESTL AX, AX
0x0053 00083 (test.go:12) JNE 119
0x0055 00085 (test.go:17) MOVQ $1000, "".i+24(SP)
0x005e 00094 (test.go:18) MOVQ $1000, "".~r0+48(SP)
0x0067 00103 (test.go:18) XCHGL AX, AX
0x0068 00104 (test.go:18) CALL runtime.deferreturn(SB)
0x006d 00109 (test.go:18) MOVQ 32(SP), BP
0x0072 00114 (test.go:18) ADDQ $40, SP
0x0076 00118 (test.go:18) RET
0x0077 00119 (test.go:12) XCHGL AX, AX
0x0078 00120 (test.go:12) CALL runtime.deferreturn(SB)
0x007d 00125 (test.go:12) MOVQ 32(SP), BP
0x0082 00130 (test.go:12) ADDQ $40, SP
0x0086 00134 (test.go:12) RET
0x0087 00135 (test.go:12) NOP
0x0087 00135 (test.go:10) PCDATA $0, $-1
0x0087 00135 (test.go:10) PCDATA $2, $-1
0x0087 00135 (test.go:10) CALL runtime.morestack_noctxt(SB)
0x008c 00140 (test.go:10) JMP 0
...
0x0000 00000 (test.go:21) TEXT "".f2(SB), ABIInternal, $32-8
0x0000 00000 (test.go:21) MOVQ (TLS), CX
0x0009 00009 (test.go:21) CMPQ SP, 16(CX)
0x000d 00013 (test.go:21) JLS 117
0x000f 00015 (test.go:21) SUBQ $32, SP
0x0013 00019 (test.go:21) MOVQ BP, 24(SP)
0x0018 00024 (test.go:21) LEAQ 24(SP), BP
0x001d 00029 (test.go:21) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:21) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:21) FUNCDATA $3, gclocals·9fb7f0986f647f17cb53dda1484e0f7a(SB)
0x001d 00029 (test.go:21) PCDATA $2, $0
0x001d 00029 (test.go:21) PCDATA $0, $0
0x001d 00029 (test.go:21) MOVQ $0, "".i+40(SP)
0x0026 00038 (test.go:22) MOVL $8, (SP)
0x002d 00045 (test.go:22) PCDATA $2, $1
0x002d 00045 (test.go:22) LEAQ "".f2.func1·f(SB), AX
0x0034 00052 (test.go:22) PCDATA $2, $0
0x0034 00052 (test.go:22) MOVQ AX, 8(SP)
0x0039 00057 (test.go:22) PCDATA $2, $1
0x0039 00057 (test.go:22) LEAQ "".i+40(SP), AX
0x003e 00062 (test.go:22) PCDATA $2, $0
0x003e 00062 (test.go:22) MOVQ AX, 16(SP)
0x0043 00067 (test.go:22) CALL runtime.deferproc(SB)
0x0048 00072 (test.go:22) TESTL AX, AX
0x004a 00074 (test.go:22) JNE 101
0x004c 00076 (test.go:26) MOVQ $1000, "".i+40(SP)
0x0055 00085 (test.go:27) XCHGL AX, AX
0x0056 00086 (test.go:27) CALL runtime.deferreturn(SB)
0x005b 00091 (test.go:27) MOVQ 24(SP), BP
0x0060 00096 (test.go:27) ADDQ $32, SP
0x0064 00100 (test.go:27) RET
0x0065 00101 (test.go:22) XCHGL AX, AX
0x0066 00102 (test.go:22) CALL runtime.deferreturn(SB)
0x006b 00107 (test.go:22) MOVQ 24(SP), BP
0x0070 00112 (test.go:22) ADDQ $32, SP
0x0074 00116 (test.go:22) RET
0x0075 00117 (test.go:22) NOP
0x0075 00117 (test.go:21) PCDATA $0, $-1
0x0075 00117 (test.go:21) PCDATA $2, $-1
0x0075 00117 (test.go:21) CALL runtime.morestack_noctxt(SB)
0x007a 00122 (test.go:21) JMP 0
... ........
rel 16+8 t=1 type.[2]interface {}+0

  

  感觉离真相只差一步了,就是看完这段汇编代码就能搞明白这个return在无名和有名返回值时分别做了什么,所谓的零时变量是咋分配的,想想就有点小激动呢

  但是,比较棘手的是,我没学过汇编-_-!

  但是again,这有什么关系呢,两个函数既然执行结果不一样,那么在汇编层面肯定也有不一样的地方,于是开始找不同,最终在上面的汇编代码分别找到关键信息如下

"".f2 STEXT size=124 args=0x8 locals=0x20
0x0000 00000 (test.go:21) TEXT "".f2(SB), ABIInternal, $32-8
0x0000 00000 (test.go:21) MOVQ (TLS), CX
0x0009 00009 (test.go:21) CMPQ SP, 16(CX)
0x000d 00013 (test.go:21) JLS 117
0x000f 00015 (test.go:21) SUBQ $32, SP
0x0013 00019 (test.go:21) MOVQ BP, 24(SP)
0x0018 00024 (test.go:21) LEAQ 24(SP), BP
0x001d 00029 (test.go:21) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:21) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:21) FUNCDATA $3, gclocals·9fb7f0986f647f17cb53dda1484e0f7a(SB)
0x001d 00029 (test.go:21) PCDATA $2, $0
0x001d 00029 (test.go:21) PCDATA $0, $0
0x001d 00029 (test.go:21) MOVQ $0, "".i+40(SP)
0x0026 00038 (test.go:22) MOVL $8, (SP)
0x002d 00045 (test.go:22) PCDATA $2, $1
0x002d 00045 (test.go:22) LEAQ "".f2.func1·f(SB), AX
0x0034 00052 (test.go:22) PCDATA $2, $0
0x0034 00052 (test.go:22) MOVQ AX, 8(SP)
0x0039 00057 (test.go:22) PCDATA $2, $1
0x0039 00057 (test.go:22) LEAQ "".i+40(SP), AX
0x003e 00062 (test.go:22) PCDATA $2, $0
0x003e 00062 (test.go:22) MOVQ AX, 16(SP)
0x0043 00067 (test.go:22) CALL runtime.deferproc(SB)
0x0048 00072 (test.go:22) TESTL AX, AX
0x004a 00074 (test.go:22) JNE 101
0x004c 00076 (test.go:26) MOVQ $1000, "".i+40(SP)
0x0055 00085 (test.go:27) XCHGL AX, AX
0x0056 00086 (test.go:27) CALL runtime.deferreturn(SB)
0x005b 00091 (test.go:27) MOVQ 24(SP), BP
0x0060 00096 (test.go:27) ADDQ $32, SP
0x0064 00100 (test.go:27) RET
0x0065 00101 (test.go:22) XCHGL AX, AX
0x0066 00102 (test.go:22) CALL runtime.deferreturn(SB)
0x006b 00107 (test.go:22) MOVQ 24(SP), BP
0x0070 00112 (test.go:22) ADDQ $32, SP
0x0074 00116 (test.go:22) RET
0x0075 00117 (test.go:22) NOP
0x0075 00117 (test.go:21) PCDATA $0, $-1
0x0075 00117 (test.go:21) PCDATA $2, $-1
0x0075 00117 (test.go:21) CALL runtime.morestack_noctxt(SB)
0x007a 00122 (test.go:21) JMP 0

  

  这是f2有名返回值的关键信息,主要看

0x004c 00076 (test.go:26)	MOVQ	$1000, "".i+40(SP)

  这个大概意思就是把1000放到"".i+40(SP)这个内存地址上,然后下面执行的操作就是返回了

"".f1 STEXT size=145 args=0x8 locals=0x28
0x0000 00000 (test.go:10) TEXT "".f1(SB), ABIInternal, $40-8
0x0000 00000 (test.go:10) MOVQ (TLS), CX
0x0009 00009 (test.go:10) CMPQ SP, 16(CX)
0x000d 00013 (test.go:10) JLS 135
0x000f 00015 (test.go:10) SUBQ $40, SP
0x0013 00019 (test.go:10) MOVQ BP, 32(SP)
0x0018 00024 (test.go:10) LEAQ 32(SP), BP
0x001d 00029 (test.go:10) FUNCDATA $0, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:10) FUNCDATA $1, gclocals·33cdeccccebe80329f1fdbee7f5874cb(SB)
0x001d 00029 (test.go:10) FUNCDATA $3, gclocals·9fb7f0986f647f17cb53dda1484e0f7a(SB)
0x001d 00029 (test.go:10) PCDATA $2, $0
0x001d 00029 (test.go:10) PCDATA $0, $0
0x001d 00029 (test.go:10) MOVQ $0, "".~r0+48(SP)
0x0026 00038 (test.go:11) MOVQ $0, "".i+24(SP)
0x002f 00047 (test.go:12) MOVL $8, (SP)
0x0036 00054 (test.go:12) PCDATA $2, $1
0x0036 00054 (test.go:12) LEAQ "".f1.func1·f(SB), AX
0x003d 00061 (test.go:12) PCDATA $2, $0
0x003d 00061 (test.go:12) MOVQ AX, 8(SP)
0x0042 00066 (test.go:12) PCDATA $2, $1
0x0042 00066 (test.go:12) LEAQ "".i+24(SP), AX
0x0047 00071 (test.go:12) PCDATA $2, $0
0x0047 00071 (test.go:12) MOVQ AX, 16(SP)
0x004c 00076 (test.go:12) CALL runtime.deferproc(SB)
0x0051 00081 (test.go:12) TESTL AX, AX
0x0053 00083 (test.go:12) JNE 119
0x0055 00085 (test.go:17) MOVQ $1000, "".i+24(SP)
0x005e 00094 (test.go:18) MOVQ $1000, "".~r0+48(SP)
0x0067 00103 (test.go:18) XCHGL AX, AX
0x0068 00104 (test.go:18) CALL runtime.deferreturn(SB)
0x006d 00109 (test.go:18) MOVQ 32(SP), BP
0x0072 00114 (test.go:18) ADDQ $40, SP
0x0076 00118 (test.go:18) RET
0x0077 00119 (test.go:12) XCHGL AX, AX
0x0078 00120 (test.go:12) CALL runtime.deferreturn(SB)
0x007d 00125 (test.go:12) MOVQ 32(SP), BP
0x0082 00130 (test.go:12) ADDQ $40, SP
0x0086 00134 (test.go:12) RET
0x0087 00135 (test.go:12) NOP
0x0087 00135 (test.go:10) PCDATA $0, $-1
0x0087 00135 (test.go:10) PCDATA $2, $-1
0x0087 00135 (test.go:10) CALL runtime.morestack_noctxt(SB)
0x008c 00140 (test.go:10) JMP 0

  

这是f1无名返回值的关键信息,主要看

0x0055 00085 (test.go:17)	MOVQ	$1000, "".i+24(SP)
0x005e 00094 (test.go:18) MOVQ $1000, "".~r0+48(SP)

  这个大概意思就是把1000放到"".i+24(SP)这个内存地址上,然后又把1000赋给了"".~r0+48(SP),这就是和f1不一样的地方。对应前面结论,我们在这里找到了验证。大致过程就是无名返回值的情况,在return的时候开辟了一个新内存空间,后续的defer读取的还是"".i+24(SP)这样的内存地址而无法读取临时空间的值。return在函数最后返回的也是"".~r0+48(SP)对应的值即1000。(因为没有研究过汇编,有些细节可能有待考证)

结论

到此,我们算是搞明白了Go语言里面return和defer之间的微妙关系,从汇编层面看清了在无名返回值和有名返回值return返回的差异。

如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!如果您想持续关注我的文章,请扫描二维码,关注JackieZheng的微信公众号,我会将我的文章推送给您,并和您一起分享我日常阅读过的优质文章。

Go语言学习——彻底弄懂return和defer的微妙关系的更多相关文章

  1. c语言学习之基础知识点介绍(五):关系运算式和逻辑运算式

    本节主要说关系运算式和逻辑运算式. 一.关系运算式 1.等于(==):判断左边的表达式是否等于右边的表达式 2.大于(>):判断左边的表达式是否大于右边的表达式 3.大于等于(>=):判断 ...

  2. Java学习——JSTL标签与EL表达式之间的微妙关系

    原文总结的太好了,忍不住记录.转发. 原文地址:http://blog.csdn.net/u010168160/article/details/49182867 目录(?)[-] 一EL表达式 EL相 ...

  3. 必须弄懂的495个C语言问题

    1.1 我如何决定使用那种整数类型? 如果需要大数 值(大于32, 767 或小于¡32, 767), 使用long 型.否则, 如果空间很重要(如有大数组或很多结构), 使用short 型.除此之外 ...

  4. 技能收获与C语言学习

    你有什么技能比大多人(超过90%以上)更好? 我会的东西很多,喜欢的东西太多,但是很遗憾广而不专,会而不精.学了很多东西我都是为了娱乐,因为以前我们那里过于强调学习,很多爱好也都被扼杀在摇篮里.我觉得 ...

  5. 技能学习经验与C语言学习调查

    技能学习经验与C语言学习调查 前言 要说的话,这还是我第一次写博客.不论是为了作业也好,为了将来的学习工作也好,写博客都是必不可少的,也算是个自我提升的途径吧.不过第一次写博客,就用从来没听说过的ma ...

  6. 20155229-付钰涵-分析自我技能延展到c语言学习状况

    我的小技能 我记得幼儿园时表演的舞蹈,也记得从水彩到素描的学习,还记得小学和初中获得的钢琴省级奖项. 舞蹈止于一年级,绘画止于三年级,钢琴从学前班到高一那十年的时间里有过断续. 03年-04年的那个冬 ...

  7. 20155306白皎 学习技能+C语言学习

    你有什么技能比大多数人更好 谈起技能,我还有感觉有微微拿得出手的也只有主持这一项才艺了吧.从小学到高中一直参加朗诵比赛,以及从小学到大学一直在所在学校有担任过主持工作. 上大学以来,也参加了院级朗诵比 ...

  8. 12天学好C语言——记录我的C语言学习之路(Day 8)

    12天学好C语言--记录我的C语言学习之路 Day 8: 从今天开始,我们获得了C语言中很有力的一个工具,那就是函数.函数的魅力不仅于此,一个程序到最后都是由众多函数组成的,我们一定要用好函数,用熟练 ...

  9. 12天学好C语言——记录我的C语言学习之路(Day 7)

    12天学好C语言--记录我的C语言学习之路 Day 7: 昨天进行了一天的数组学习,今天大家可以先写几个昨天的程序热热身,回顾回顾,然后今天第一个新程序也是关于数组的,比较难,准备好就开始啦! //输 ...

随机推荐

  1. npm与cnpm混用导致的问题

    npm和cnpm混用之后,再用npm升级模块导致如下错误: 解决办法: 删除node_modules文件下的文件后,重新执行npm install

  2. http_load测试初阶

    http_load的标准的两个例子是: 1.         http_load -parallel 5 -fetches 1000 urls.txt 2.         http_load -ra ...

  3. 写在使用 Linux 工作一年后

    start 去年公司空了几台台式机,当时看了下似乎配置比我用的乞丐版 air 略高一些,而且除了 ssd 以外还有一个 1T 的大硬盘,加上后面可能会有一段时间不做 iOS 了,那就不需要 macOS ...

  4. 一言不合就写socket的post和get请求(拼内容,然后发出去即可)

    一言不合就写socket的post和get请求.写个桌面程序,利用java写get和post请求.测试成功: SocketReq.java package com.test.CipherIndex; ...

  5. 的二分图poj2446

    称号:id=2446">poj2446 意甲冠军:给定一个m*n矩阵,在有些地方坑,然后1*2本文叠加,反复.可以把出了坑的地方其它所有覆盖的话输出YES,否则NO 分析:有一道二分图 ...

  6. C#: Get current keyboard layout\input language

    原文 https://yal.cc/csharp-get-current-keyboard-layout/ On some occasions, you may want to get a " ...

  7. 031 二进制1的数量(keep it up, 看到这个问题,刚开始有点蒙)

    剑指offer在标题中:http://ac.jobdu.com/problem.php?pid=1513 题目描写叙述: 输入一个整数,输出该数二进制表示中1的个数.当中负数用补码表示. 输入: 输入 ...

  8. VS2015静态编译libcurl(C++ curl封装类)

    一.最新libcurl静态编译教程(curl-7.51版/curl-7.52版) 1.安装perl,在官网下载,安装好以后,测试perl -v是否成功 2.编译openssl(已编译好的下载地址) p ...

  9. Angular语法(一)——展示数据

    双花括号{{}} 展示数据 title = 'Tour of Heroes'; myHero = 'Windstorm'; <h1>{{title}}</h1> <h2& ...

  10. MultiBinding

    <StackPanel> <Slider x:Name="sl1" Minimum="10" Maximum="100"/ ...