思路:

若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.
设a1,a2,a3......an为n个整数,d是它们的最大公约数,那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=d。
特别来说,如果a1...an互质(不是两两互质),那么存在整数x1......xn使得x1*a1+x2*a2+...xn*an=1。证法类似两个数的情况。
from 百度
//By SiriusRen
#include <cstdio>
using namespace std;
int n,ans,xx;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&xx),ans=gcd(ans,xx);
printf("%d\n",ans>?ans:-ans);
}

BZOJ 1441 裴蜀定理的更多相关文章

  1. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  2. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...

  3. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  4. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  5. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  6. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  7. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  8. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  9. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

随机推荐

  1. OpenCV: 图像连通域检测的递归算法

    序言:清除链接边缘,可以使用数组进行递归运算; 连通域检测的递归算法是定义级别的检测算法,且是无优化和无语义失误的. 同样可用于寻找连通域 void ClearEdge(CvMat* MM,CvPoi ...

  2. C# 网页内容获取

    private string GetGeneralContent(string strUrl) { string strMsg = string.Empty; try { WebRequest req ...

  3. Nginx服务的地址重写

    调整Nginx服务器配置,实现: 1.所有访问a.html的请求,重定向到b.html; 2.所有访问Nginx服务器(192.168.4.1)的请求重定向至www.baidu.com: 3.所有访问 ...

  4. 【剑指Offer】5、用两个栈实现队列

      题目描述:   用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型.   解题思路:   本题的基本意图是:用两个后入先出的栈来实现先入先出的队列.对于这个问题,我 ...

  5. DOM学习之充实文档内容

    HTML代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <me ...

  6. 宏、预编译(day12)

    指针数组里的每个存储区是一个指针类型 的存储区 字符指针数组里包含多个字符类型指针,其中 每个指针可以表示一个字符串 字符指针数组可以用来表示多个相关字符串 主函数的第二个参数是一个字符指针数组, 其 ...

  7. 多重循环、缓冲区管理、数组(day06)

    无法预知的数字叫随机数 rand标准函数可以用来获得随机数 为了使用这个标准函数需要包含stdlib.h头文件 srand标准函数用来设置随机数种子 这个函数把一个整数作为种子使用 不同的种子产生的随 ...

  8. 洛谷P1060 开心的金明【dp】

    金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行&qu ...

  9. 通过redis协议构建脏字过滤微服务

    下载 https://github.com/jonnywang/... 安装使用 mkdir -p /data/server/wordsFilter cd /data/server/wordsFilt ...

  10. 使用厂商MIB库查找设备OID值并实施监控的方法

    https://wenku.baidu.com/view/8f4b389e0029bd64783e2cd0.html