上周一个叫 Abhishek Thakur 的数据科学家,在他的 Linkedin 发表了一篇文章 Approaching (Almost) Any Machine Learning Problem,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,项目很快也会发布出来。

这篇文章迅速火遍 Kaggle,他参加过100多个数据科学相关的竞赛,积累了很多宝贵的经验,看他很幽默地说“写这样的框架需要很多丰富的经验,不是每个人都有这样的经历,而很多人有宝贵的经验,但是他们不愿意分享,我呢恰好是又有一些经验,又愿意分享的人”。当然这篇文章也是受到争议的,很多人觉得并不全面。

这篇文章,里面提到了一些高效的方法,最干货的是,他做了一个表格,列出了各个算法通常需要训练的参数。

这个问题很重要,因为大部分时间都是通过调节参数,训练模型来提高精度。作为一个初学者,第一阶段,最想知道的问题,就是如何调节参数。

因为分析的套路很简单,就那么几步,常用的算法也就那么几个,以为把算法调用一下就可以了么,那是肯定不行的。实际过程中,调用完算法后,结果一般都不怎么好,这个时候还需要进一步分析,哪些参数可以调优,哪些数据需要进一步处理,还有什么更合适的算法等等问题。

接下来一起来看一下他的框架。

据说数据科学家 60-70% 的时间都花在数据清洗和应用模型算法上面,这个框架主要针对算法的应用部分。

Pipeline

什么是 Kaggle?

Kaggle是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决,可以通过这些数据积累经验,提高机器学习的水平。

应用算法解决 Kaggle 问题,一般有以下几个步骤:

  • 第一步:识别问题

  • 第二步:分离数据

  • 第三步:构造提取特征

  • 第四步:组合数据

  • 第五步:分解

  • 第六步:选择特征

  • 第七步:选择算法进行训练

当然,工欲善其事,必先利其器,要先把工具和包都安好。

最方便的就是安装 Anaconda,这里面包含大部分数据科学所需要的包,直接引入就可以了,常用的包有:

  • pandas:常用来将数据转化成 dataframe 形式进行操作

  • scikit-learn:里面有要用到的机器学习算法模型

  • matplotlib:用来画图

  • 以及 xgboost,keras,tqdm 等。

第一步:识别问题

在这一步先明确这个问题是分类还是回归。通过问题和数据就可以判断出来,数据由 X 和 label 列构成,label 可以一列也可以多列,可以是二进制也可以是实数,当它为二进制时,问题属于分类,当它为实数时,问题属于回归。

第二步:分离数据

为什么需要将数据分成两部分?

用 Training Data 来训练模型,用 Validation Data 来检验这个模型的表现,不然的话,通过各种调节参数,模型可以在训练数据集上面表现的非常出色,但是这可能会是过拟合,过拟合就是太依赖现有的数据了,拟合的效果特别好,但是只适用于训练集,以致于来一个新的数据,就不知道该预测成什么了。所以需要有 Validation 来验证一下,看这个模型是在那里自娱自乐呢,还是真的表现出色。

在 scikit learn 包里就有工具可以帮你做到这些:

分类问题用 StrtifiedKFold

from sklearn.cross_validation import StratifiedKFold

回归问题用 KFold

from sklearn.cross_validation import KFold

第三步:构造特征

这个时候,需要将数据转化成模型需要的形式。数据有三种类型:数字,类别,文字。当数据是类别的形式时,需要将它的每一类提取出来作为单独一列,然后

用二进制表示每条记录相应的值。例如:

record 1: 性别 女
record 2:性别 女
record 3:性别 男

转化之后就是:

女 男
record 1: 1 0
record 2:1 0
record 3:0 1

这个过程 sklearn 也可以帮你做到:

from sklearn.preprocessing import LabelEncoder

或者

from sklearn.preprocessing import OneHotEncoder

第四步:组合数据

处理完 Feature 之后,就将它们组合到一起。
如果数据是稠密的,就可以用 numpy 的 hstack:

import numpy as np

X = np.hstack((x1, x2, ...))

如果是稀疏的,就用 sparse 的 hstack:

from scipy import sparse

X = sparse.hstack((x1, x2, ...))

组合之后,就可以应用以下算法模型:

  • RandomForestClassifier

  • RandomForestRegressor

  • ExtraTreesClassifier

  • ExtraTreesRegressor

  • XGBClassifier

  • XGBRegressor

但是不能应用线性模型,线性模型之前需要对数据进行正则化而不是上述预处理。

第五步:分解

这一步是为了进一步优化模型,可以用以下方法:

PCA:Principal components analysis,主成分分析,是一种分析、简化数据集的技术。用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。

from sklearn.decomposition import PCA

对于文字数据,在转化成稀疏矩阵之后,可以用 SVD

from sklearn.decomposition import TruncatedSVD

SVD:Singular Value Decomposition,奇异值分解,是线性代数中一种重要的矩阵分解,它总能找到标准化正交基后方差最大的维度,因此用它进行降维去噪。

第六步:选择特征

当特征个数越多时,分析特征、训练模型所需的时间就越长,容易引起“维度灾难”,模型也会越复杂,推广能力也会下降,所以需要剔除不相关或亢余的特征。

常用的算法有完全搜索,启发式搜索,和随机算法。

例如,Random Forest:

from sklearn.ensemble import RandomForestClassifier

或者 xgboost:

import xgboost as xgb

对于稀疏的数据,一个比较有名的方法是 chi-2:

from sklearn.feature_selection import SelectKBestfrom sklearn.feature_selection import chi2

第七步:选择算法进行训练

选择完最相关的参数之后,接下来就可以应用算法,常用的算法有:

Classification:
Random Forest
GBM
Logistic Regression
Naive Bayes
Support Vector Machines
k-Nearest Neighbors

Regression
Random Forest
GBM
Linear Regression
Ridge
Lasso
SVR

在scikit-learn里可以看到分类和回归的可用的算法一览,包括它们的原理和例子代码。在应用各算法之前先要明确这个方法到底是否合适。

为什么那么多算法里,只提出这几个算法呢,这就需要对比不同算法的性能了。

这篇神文 Do we Need Hundreds of Classifiers to Solve Real World Classification Problems 测试了179种分类模型在UCI所有的121个数据上的性能,发现Random Forests 和 SVM 性能最好。

我们可以学习一下里面的调研思路,看看是怎么样得到比较结果的,在我们的实践中也有一定的指导作用。

各算法比较

但是直接应用算法后,一般精度都不是很理想,这个时候需要调节参数,最干货的问题来了,什么模型需要调节什么参数呢?

虽然在sklearn的文档里,会列出所有算法所带有的参数,但是里面并不会说调节哪个会有效。在一些mooc课程里,有一些项目的代码,里面可以看到一些算法应用时,他们重点调节的参数,但是有的也不会说清楚为什么不调节别的。

这里作者根据他100多次比赛的经验,列出了这个表,我觉得可以借鉴一下,当然,如果有时间的话,去对照文档里的参数列表,再查一下算法的原理,通过理论也是可以判断出来哪个参数影响比较大的。

调参之后,也并不就是大功告成,这个时候还是需要去思考,是什么原因造成精度低的,是哪些数据的深意还没有被挖掘到,这个时候需要用统计和可视化去再一次探索数据,之后就再走一遍上面的过程。

我觉得这里还提到了很有用的一条经验是,把所有的 transformer 都保存起来,方便在 validation 数据集上面应用:

Kaggle爆文:一个框架解决几乎所有机器学习问题的更多相关文章

  1. [干货]Kaggle热门 | 用一个框架解决所有机器学习难题

    新智元推荐 来源:LinkedIn 作者:Abhishek Thakur 译者:弗格森 [新智元导读]本文是数据科学家Abhishek Thakur发表的Kaggle热门文章.作者总结了自己参加100 ...

  2. Mybatis详解系列(一)--持久层框架解决了什么及如何使用Mybatis

    简介 Mybatis 是一个持久层框架,它对 JDBC 进行了高级封装,使我们的代码中不会出现任何的 JDBC 代码,另外,它还通过 xml 或注解的方式将 sql 从 DAO/Repository ...

  3. MindSpore联邦学习框架解决行业级难题

    内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程 ...

  4. 构建NetCore应用框架之实战篇(一):什么是框架,如何设计一个框架

    一.系列简述 本篇起,将通过一系列文章,去描述如何构建一个应用开发框架,并以作者开发的框架为例,逐个点展开分析,如何从零开始,构建自己的开发框架. 本系列文章的目的,是带领有一编程经验的人,通过动手, ...

  5. 第六章 “我要点爆”微信小程序云开发实例之爆文详情页制作

    爆文详情页制作 从首页中数据列表打开相应详情页面的方法: 给数据列表中每个数据项加一个点击事件,同时将当前数据项的id暂时记录在本地,然后跳转到详情页面detail goopen: function ...

  6. 如何在Visual Studio 2017中使用C# 7+语法 构建NetCore应用框架之实战篇(二):BitAdminCore框架定位及架构 构建NetCore应用框架之实战篇系列 构建NetCore应用框架之实战篇(一):什么是框架,如何设计一个框架 NetCore入门篇:(十二)在IIS中部署Net Core程序

    如何在Visual Studio 2017中使用C# 7+语法   前言 之前不知看过哪位前辈的博文有点印象C# 7控制台开始支持执行异步方法,然后闲来无事,搞着,搞着没搞出来,然后就写了这篇博文,不 ...

  7. zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...

  8. (十)整合 JWT 框架,解决Token跨域验证问题

    整合 JWT 框架,解决Token跨域验证问题 1.传统Session认证 1.1 认证过程 1.2 存在问题 2.JWT简介 2.1 认证流程 2.2 JWT结构说明 2.3 JWT使用方式 3.S ...

  9. storm源码之一个class解决nimbus单点问题【转】

    本文导读: storm nimbus 单节点问题概述 storm与解决nimbus单点相关的概念 nimbus目前无法做到多节点的原因 解决nimbus单点问题的关键 业界对nimbus单点问题的努力 ...

随机推荐

  1. Android 链接 手机有关问题及解决方案

    我出现的问题: 这是我百度的解决方案:

  2. 通过Static 字段来维护状态是不是一个好主意

    static是申明静态字段.静态方法或者静态类的修饰符.使用static申明的字段属于类型本身而不属于任何字段,声明的类也具有一些特别特性,比如不能实例化,不能继承等.用通俗化的语言来说,static ...

  3. Day 25 面向对象

    面向对象基础 面向对象编程 面向过程编程:类似于工厂的流水线 优点:逻辑清晰 缺点:扩展性差 面向对象编程:核心是对象二字,对象属性和方法的集合体,面向对象编程就是一堆对象交互 优点:扩展性强 缺点: ...

  4. Html-如何正确给table加边框

    一般来说,给表格加边框都会出现不同的问题,以下是给表格加边框后展现比较好的方式 <style> table,table tr th, table tr td { border:1px so ...

  5. Codeforces Round #406 (Div. 2) 787-D. Legacy

    Rick and his co-workers have made a new radioactive formula and a lot of bad guys are after them. So ...

  6. 填坑...P1546 最短网络 Agri-Net

    P1546 最短网络 Agri-Net 难度普及/提高- 时空限制1s / 128MB 题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要 ...

  7. [luogu2414 NOI2011]阿狸的打字机 (AC自动机)

    传送门 Solution 我们知道AC自动机上如果有一点A的fail[A]->B那么B为A的一个后缀 那么我们的问题\((x,y)\)就变为在y中有多少个点直接或间接连向x的终止节点 如果写暴力 ...

  8. 【生产环境】Tomcat运行一段时间后访问变慢分析历程

    环境运行一天或者几天,网站访问就很卡,手机端app访问页面出现白屏.Tomcat运行一段时间后访问变慢,但是cpu,内存都正常.日志也是发现不了啥.... 问题的原先分析 1.环境配置(cpu,内存, ...

  9. CSS学习笔记之CSS3新特性

    目录 1.边框 2.背景 3.文本 4.字体 5.转换 6.过渡 7.动画 8.多列 9.自定义尺寸 CSS 用于控制网页的样式和布局,而 CSS3 是最新的 CSS 标准,这篇文章将着重介绍 CSS ...

  10. CSS学习笔记之样式声明

    目录 1.背景 2.文本 3.字体 4.列表 5.表格 6.轮廓 在这篇文章中你能看到有关于 CSS 样式设置的常用属性,文章的目录如下: 1.背景 (1)背景颜色 可以使用 background-c ...