题目背景

在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:

1 2 3 4

8 7 6 5

题目描述

我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。

这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):

“A”:交换上下两行;

“B”:将最右边的一列插入最左边;

“C”:魔板中央四格作顺时针旋转。

下面是对基本状态进行操作的示范:

A: 8 7 6 5

1 2 3 4

B: 4 1 2 3

5 8 7 6

C: 1 7 2 4

8 6 3 5

对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。

输入输出格式

输入格式:

只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。

输出格式:

Line 1: 包括一个整数,表示最短操作序列的长度。

Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。

输入输出样例

输入样例#1:

2 6 8 4 5 7 3 1 
输出样例#1:

7
BCABCCB

说明

题目翻译来自NOCOW。

USACO Training Section 3.2

思路:见代码。

#include <iostream>
#include <cstdio>
using namespace std;
const int N = 5e4 + , M = 165e5;
const int G[][]={{,,,,,,,,}, //操作A:交换上下两行
{,,,,,,,,}, //操作B:将最右边的一列插入最左边
{,,,,,,,,}};//操作C:魔板中央四格作顺时针旋转
//我们可以用一个常量数组来简单地表示ABC三种操作
//即经过这一次操作后,现在状态中的第i个位置是有原先的哪一个位置变换来的
int h[N][],a[],pf[N][];
char stk[N];
int t,w=,x,edt,now,top;
bool vis[M]; //用于判重的bool数组
int main(){
for(int i=;i<=;++i){
scanf("%d",&x);
edt=(edt<<)+x-;
}
//同样将目标状态转换为八进制数,便于我们直接判断
for(int i=;i<=;++i)
now=(now<<)+(h[][i]=i-);
//“<< 3”即表示位运算的右移三位,也就是乘以8
vis[now]=true; //注意初始状态也要标记为已经搜索过
if(now==edt)
return puts(""), ;
//注意如果初始状态和目标状态相同应直接退出
while((t++)<w){
for(int i=;i<;++i){
//对于答案中的操作字典序问题,我们考虑按照操作ABC的顺序搜索
//这样先搜索到的一定是字典序最小的
now=;
for(int j=;j<=;++j)
now=(now<<)+(a[j]=h[t][G[i][j]]);
//计算经过转换后的状态
if(vis[now]) continue; //判重
vis[now]=true;
pf[++w][]=t;
pf[w][]=i+'A';
//因为题目中要求输出操作序列
//记录队列中每一个元素是由之前的哪一个元素、经过哪一个操作转换来的
//然后按着当前搜到的目标状态倒着找回去,再顺着输出操作就是答案了
h[w][]=h[t][]+;
for(int j=;j<=;++j)
h[w][j]=a[j];
if(now==edt){ //转换到了目标状态
printf("%d\n",h[w][]);
x=w;
while(pf[x][]){
stk[++top]=pf[x][];
x=pf[x][];
}
//数组stk即记录转换到目标状态依次进行的操作
for(int i=top;i>=;--i)
putchar(stk[i]);
return ;
}
}
}
return ;
}

洛谷 P2730 魔板 Magic Squares的更多相关文章

  1. 洛谷 P2730 魔板 Magic Squares 解题报告

    P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...

  2. [洛谷P2730] 魔板 Magic Squares

    洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...

  3. 洛谷 - P2730 - 魔板 Magic Squares - bfs

    写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...

  4. 洛谷P2730 魔板 [广搜,字符串,STL]

    题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...

  5. P2730 魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

  6. P2730 魔板 Magic Squares (搜索)

    题目链接 Solution 这道题,我是用 \(map\) 做的. 具体实现,我们用一个 \(string\) 类型表示任意一种情况. 可以知道,排列最多只有 \(8!\) 个. 然后就是直接的广搜了 ...

  7. 哈希+Bfs【P2730】 魔板 Magic Squares

    没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...

  8. 【简●解】 LG P2730 【魔板 Magic Squares】

    LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...

  9. [USACO3.2]魔板 Magic Squares

    松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...

随机推荐

  1. echarts如何更改表格主题颜色

    vue项目中,需要使用echarts时,需要根据UI设计图进行图标颜色修改 方法一: 1.在script中引入echarts以及主题样式: import echarts from 'echarts'; ...

  2. [luogu] P2354 [NOI2014]随机数生成器 (贪心)

    Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M ...

  3. a[i++]=a 数组下标自加优先问题

    a[i++]=a 即是: a[i] = a;i ++;先把a赋值给数组a下标为 i 的 元素把 i 自加 1 :即指向下一个元素 =================================== ...

  4. 表单标签 fieldset legent

    书写表单时可以提供简单样式的标签 <fieldset> <legent></legent> <input type="text" > ...

  5. 洛谷 P1922 女仆咖啡厅桌游吧

    P1922 女仆咖啡厅桌游吧 题目背景 小v带萌萌的妹妹去玩,妹妹想去女仆咖啡馆,小v想去桌游吧. 妹妹:“我问你个问题,答不对你就做我一天的奴隶,答对了就今天我就全部听你的.” 小v:“全部都听!? ...

  6. HDU 4331 Contest 4

    一个很直观的想法是,求出每个点上下左右能到达的最大长度.然后枚举其斜边...没想到过了.... 当然,题解有一个很巧妙的优化,利用树状数组,那个太巧妙了. #include<iostream&g ...

  7. [Hyperapp] Interact with the State Object through Hyperapp Action functions

    Hyperapp is an ultra lightweight (1kb), minimal, functional, JavaScript library for building UIs. It ...

  8. 跟我学设计模式视频教程——适配器模式,适配器模式VS装饰模式

    课程视频 适配器模式 适配器模式VS装饰模式 唠嗑 课程笔记 课程笔记 课程代码 课程代码 新课程火热报名中 课程介绍

  9. oracle 11g sql developer安装后无法使用

    oracle11g安装后出现   再去官网单独下来个sql developer安装 sql developer须要jre支持

  10. perl getopt 用法

    我们在linux经常常使用到一个程序须要增加參数,如今了解一下perl中的有关控制參数的函数.getopt.在linux有的參数有二种形式.一种是--help,还有一种是-h.也就是-和--的分别.- ...