OpenCV的2.4.7.版本生成了python的CV2模块,可以直接载入;

有兴趣的可以参考这个教程:http://blog.csdn.net/sunny2038/article/details/9080047  不过可惜的是,这个教程只是针对CV2 的;

Tips1: 关于两种载入方法的区别:

import numpy as np
import cv2 as cv2
Vs.
import cv2.cv as cv

(一):引入CV2使用:

第一种方法的cv函数使用方法几乎等同于matlab,其中可以使用的函数范围也较少;

例如:利用help(cv2)命令;

查看函数列表如下:

ANN_MLP([layerSizes[, activateFunc[, fparam1[, fparam2]]]]) -> <ANN_MLP object>
Algorithm__create(name) -> retval
Algorithm_getList() -> algorithms
BFMatcher([, normType[, crossCheck]]) -> <BFMatcher object>
BRISK([, thresh[, octaves[, patternScale]]]) -> <BRISK object> or BRISK(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> <BRISK object>
BackgroundSubtractorMOG([history, nmixtures, backgroundRatio[, noiseSigma]]) -> <BackgroundSubtractorMOG object>
Boost([trainData, tflag, responses[, varIdx[, sampleIdx[, varType[, missingDataMask[, params]]]]]]) -> <Boost object>
CamShift(probImage, window, criteria) -> retval, window
Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges
CascadeClassifier([filename]) -> <CascadeClassifier object>
DMatch() -> <DMatch object> or DMatch(_queryIdx, _trainIdx, _distance) -> <DMatch object> or DMatch(_queryIdx, _trainIdx, _imgIdx, _distance) -> <DMatch object>
DTree() -> <DTree object>
DescriptorExtractor_create(descriptorExtractorType) -> retval
DescriptorMatcher_create(descriptorMatcherType) -> retval
EM([, nclusters[, covMatType[, termCrit]]]) -> <EM object>
ERTrees() -> <ERTrees object>
FastFeatureDetector([, threshold[, nonmaxSuppression]]) -> <FastFeatureDetector object>
Feature2D_create(name) -> retval
FeatureDetector_create(detectorType) -> retval
FileNode() -> <FileNode object>
FileStorage([source, flags[, encoding]]) -> <FileStorage object>
FlannBasedMatcher([, indexParams[, searchParams]]) -> <FlannBasedMatcher object>
GBTrees([trainData, tflag, responses[, varIdx[, sampleIdx[, varType[, missingDataMask[, params]]]]]]) -> <GBTrees object>
GFTTDetector([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> <GFTTDetector object>
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst
GridAdaptedFeatureDetector([, detector[, maxTotalKeypoints[, gridRows[, gridCols]]]]) -> <GridAdaptedFeatureDetector object> HOGDescriptor() -> <HOGDescriptor object> or HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins[, _derivAperture[, _winSigma[, _histogramNormType[, _L2HysThreshold[, _gammaCorrection[, _nlevels]]]]]]) -> <HOGDescriptor object> or HOGDescriptor(filename) -> <HOGDescriptor object> HOGDescriptor_getDaimlerPeopleDetector() -> retval
HOGDescriptor_getDefaultPeopleDetector() -> retval
HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles
HoughLines(image, rho, theta, threshold[, lines[, srn[, stn]]]) -> lines
HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) -> lines
HuMoments(m[, hu]) -> hu KDTree() -> <KDTree object> or KDTree(points[, copyAndReorderPoints]) -> <KDTree object> or KDTree(points, _labels[, copyAndReorderPoints]) -> <KDTree object> KNearest([trainData, responses[, sampleIdx[, isRegression[, max_k]]]]) -> <KNearest object>
KalmanFilter([dynamParams, measureParams[, controlParams[, type]]]) -> <KalmanFilter object>
KeyPoint([x, y, _size[, _angle[, _response[, _octave[, _class_id]]]]]) -> <KeyPoint object>
LUT(src, lut[, dst[, interpolation]]) -> dst
Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst MSER([, _delta[, _min_area[, _max_area[, _max_variation[, _min_diversity[, _max_evolution[, _area_threshold[, _min_margin[, _edge_blur_size]]]]]]]]]) -> <MSER object> Mahalanobis(v1, v2, icovar) -> retval
NormalBayesClassifier([trainData, responses[, varIdx[, sampleIdx]]]) -> <NormalBayesClassifier object>
ORB([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize]]]]]]]]) -> <ORB object>
PCABackProject(data, mean, eigenvectors[, result]) -> result
PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors
PCAComputeVar(data, retainedVariance[, mean[, eigenvectors]]) -> mean, eigenvectors
PCAProject(data, mean, eigenvectors[, result]) -> result PSNR(src1, src2) -> retval
PyramidAdaptedFeatureDetector(detector[, maxLevel]) -> <PyramidAdaptedFeatureDetector object>
RQDecomp3x3(src[, mtxR[, mtxQ[, Qx[, Qy[, Qz]]]]]) -> retval, mtxR, mtxQ, Qx, Qy, Qz
RTrees() -> <RTrees object>
Rodrigues(src[, dst[, jacobian]]) -> dst, jacobian
SIFT([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma]]]]]) -> <SIFT object>
SURF([hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> <SURF object>
SVBackSubst(w, u, vt, rhs[, dst]) -> dst
SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt
SVM([trainData, responses[, varIdx[, sampleIdx[, params]]]]) -> <SVM object> Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
SimpleBlobDetector([, parameters]) -> <SimpleBlobDetector object>
SimpleBlobDetector_Params() -> <SimpleBlobDetector_Params object>
Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
StarDetector([, _maxSize[, _responseThreshold[, _lineThresholdProjected[, _lineThresholdBinarized[, _suppressNonmaxSize]]]]]) -> <StarDetector object> StereoBM([preset[, ndisparities[, SADWindowSize]]]) -> <StereoBM object>
StereoSGBM([minDisparity, numDisparities, SADWindowSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, fullDP]]]]]]]]]) -> <StereoSGBM object>
StereoVar([levels, pyrScale, nIt, minDisp, maxDisp, poly_n, poly_sigma, fi, lambda, penalization, cycle, flags]) -> <StereoVar object> Subdiv2D([rect]) -> <Subdiv2D object>
VideoCapture() -> <VideoCapture object> or VideoCapture(filename) -> <VideoCapture object> or VideoCapture(device) -> <VideoCapture object>
VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) -> <VideoWriter object> absdiff(src1, src2[, dst]) -> dst
accumulate(src, dst[, mask]) -> None
accumulateProduct(src1, src2, dst[, mask]) -> None
accumulateSquare(src, dst[, mask]) -> None
accumulateWeighted(src, dst, alpha[, mask]) -> None
adaptiveBilateralFilter(src, ksize, sigmaSpace[, dst[, maxSigmaColor[, anchor[, borderType]]]]) -> dst
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst
add(src1, src2[, dst[, mask[, dtype]]]) -> dst
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
applyColorMap(src, colormap[, dst]) -> dst approxPolyDP(curve, epsilon, closed[, approxCurve]) -> approxCurve
arcLength(curve, closed) -> retval
batchDistance(src1, src2, dtype[, dist[, nidx[, normType[, K[, mask[, update[, crosscheck]]]]]]]) -> dist, nidx
bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
bitwise_and(src1, src2[, dst[, mask]]) -> dst
bitwise_not(src[, dst[, mask]]) -> dst
bitwise_or(src1, src2[, dst[, mask]]) -> dst
bitwise_xor(src1, src2[, dst[, mask]]) -> dst blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst
borderInterpolate(p, len, borderType) -> retval
boundingRect(points) -> retval
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst
buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBorder[, derivBorder[, tryReuseInputImage]]]]]) -> retval, pyramid calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst
calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean
calcGlobalOrientation(orientation, mask, mhi, timestamp, duration) -> retval
calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist
calcMotionGradient(mhi, delta1, delta2[, mask[, orientation[, apertureSize]]]) -> mask, orientation
calcOpticalFlowFarneback(prev, next, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags[, flow]) -> flow
calcOpticalFlowPyrLK(prevImg, nextImg, prevPts[, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]]) -> nextPts, status, err
calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow) -> None or calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow, sigma_dist, sigma_color, postprocess_window, sigma_dist_fix, sigma_color_fix, occ_thr, upscale_averaging_radius, upscale_sigma_dist, upscale_sigma_color, speed_up_thr) -> None calibrateCamera(objectPoints, imagePoints, imageSize[, cameraMatrix[, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs
calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight) -> fovx, fovy, focalLength, principalPoint, aspectRatio
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle chamerMatching(img, templ[, templScale[, maxMatches[, minMatchDistance[, padX[, padY[, scales[, minScale[, maxScale[, orientationWeight[, truncate]]]]]]]]]]) -> retval, results, cost checkHardwareSupport(feature) -> retval
checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos
circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> None
clipLine(imgRect, pt1, pt2) -> retval, pt1, pt2
compare(src1, src2, cmpop[, dst]) -> dst
compareHist(H1, H2, method) -> retval
completeSymm(mtx[, lowerToUpper]) -> None
composeRT(rvec1, tvec1, rvec2, tvec2[, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[, dt3dr1[, dt3dt1[, dt3dr2[, dt3dt2]]]]]]]]]]) -> rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2 computeCorrespondEpilines(points, whichImage, F[, lines]) -> lines
contourArea(contour[, oriented]) -> retval
convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2
convertPointsFromHomogeneous(src[, dst]) -> dst
convertPointsToHomogeneous(src[, dst]) -> dst
convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst convexHull(points[, hull[, clockwise[, returnPoints]]]) -> hull
convexityDefects(contour, convexhull[, convexityDefects]) -> convexityDefects
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst
cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderType]]) -> dst
cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) -> dst
cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]]]) -> dst cornerSubPix(image, corners, winSize, zeroZone, criteria) -> None
correctMatches(F, points1, points2[, newPoints1[, newPoints2]]) -> newPoints1, newPoints2
countNonZero(src) -> retval createCLAHE([, clipLimit[, tileGridSize]]) -> retval
createEigenFaceRecognizer([, num_components[, threshold]]) -> retval
createFisherFaceRecognizer([, num_components[, threshold]]) -> retval
createHanningWindow(winSize, type[, dst]) -> dst
createLBPHFaceRecognizer([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval createTrackbar(trackbarName, windowName, value, count, onChange) -> None
cubeRoot(val) -> retval
cvtColor(src, code[, dst[, dstCn]]) -> dst
dct(src[, dst[, flags]]) -> dst decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMatrixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) -> cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles destroyAllWindows() -> None
destroyWindow(winname) -> None
determinant(mtx) -> retval dft(src[, dst[, flags[, nonzeroRows]]]) -> dst
dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
distanceTransform(src, distanceType, maskSize[, dst]) -> dst
distanceTransformWithLabels(src, distanceType, maskSize[, dst[, labels[, labelType]]]) -> dst, labels
divide(src1, src2[, dst[, scale[, dtype]]]) -> dst or divide(scale, src2[, dst[, dtype]]) -> dst
drawChessboardCorners(image, patternSize, corners, patternWasFound) -> None
drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> None drawDataMatrixCodes(image, codes, corners) -> None
drawKeypoints(image, keypoints[, outImage[, color[, flags]]]) -> outImage
eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors
ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> None or ellipse(img, box, color[, thickness[, lineType]]) -> None
ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta) -> pts
equalizeHist(src[, dst]) -> dst erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
estimateAffine3D(src, dst[, out[, inliers[, ransacThreshold[, confidence]]]]) -> retval, out, inliers
estimateRigidTransform(src, dst, fullAffine) -> retval
exp(src[, dst]) -> dst
extractChannel(src, coi[, dst]) -> dst
fastAtan2(y, x) -> retval fastNlMeansDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
fastNlMeansDenoisingColored(src[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst
fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst
fillConvexPoly(img, points, color[, lineType[, shift]]) -> None
fillPoly(img, pts, color[, lineType[, shift[, offset]]]) -> None filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
filterSpeckles(img, newVal, maxSpeckleSize, maxDiff[, buf]) -> None
findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners
findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers
findCirclesGridDefault(image, patternSize[, centers[, flags]]) -> retval, centers
findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy findDataMatrix(image[, corners[, dmtx]]) -> codes, corners, dmtx
findFundamentalMat(points1, points2[, method[, param1[, param2[, mask]]]]) -> retval, mask
findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask]]]) -> retval, mask
findNonZero(src[, idx]) -> idx
fitEllipse(points) -> retval
fitLine(points, distType, param, reps, aeps[, line]) -> line flann_Index([features, params[, distType]]) -> <flann_Index object>
flip(src, flipCode[, dst]) -> dst
floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, rect
gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst
getAffineTransform(src, dst) -> retval
getBuildInformation() -> retval
getCPUTickCount() -> retval
getDefaultNewCameraMatrix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) -> retval getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky
getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval
getGaussianKernel(ksize, sigma[, ktype]) -> retval
getNumberOfCPUs() -> retval
getOptimalDFTSize(vecsize) -> retval
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI
getPerspectiveTransform(src, dst) -> retval
getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch getRotationMatrix2D(center, angle, scale) -> retval
getStructuringElement(shape, ksize[, anchor]) -> retval
getTextSize(text, fontFace, fontScale, thickness) -> retval, baseLine
getTickCount() -> retval
getTickFrequency() -> retval
getTrackbarPos(trackbarname, winname) -> retval
getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, SADWindowSize) -> retval
getWindowProperty(winname, prop_id) -> retval goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners
grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) -> None
groupRectangles(rectList, groupThreshold[, eps]) -> rectList, weights
hconcat(src[, dst]) -> dst idct(src[, dst[, flags]]) -> dst
idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
imdecode(buf, flags) -> retval
imencode(ext, img[, params]) -> retval, buf imread(filename[, flags]) -> retval
imshow(winname, mat) -> None
imwrite(filename, img[, params]) -> retval
inRange(src, lowerb, upperb[, dst]) -> dst
initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval
initModule_nonfree() -> retval
initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2
initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize, destImageWidth, m1type[, map1[, map2[, projType[, alpha]]]]) -> retval, map1, map2 inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst
insertChannel(src, dst, coi) -> None
integral(src[, sum[, sdepth]]) -> sum
integral2(src[, sum[, sqsum[, sdepth]]]) -> sum, sqsum
integral3(src[, sum[, sqsum[, tilted[, sdepth]]]]) -> sum, sqsum, tilted intersectConvexConvex(_p1, _p2[, _p12[, handleNested]]) -> retval, _p12
invert(src[, dst[, flags]]) -> retval, dst
invertAffineTransform(M[, iM]) -> iM
isContourConvex(contour) -> retval kmeans(data, K, criteria, attempts, flags[, bestLabels[, centers]]) -> retval, bestLabels, centers
line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> None
log(src[, dst]) -> dst
magnitude(x, y[, magnitude]) -> magnitude
matMulDeriv(A, B[, dABdA[, dABdB]]) -> dABdA, dABdB matchShapes(contour1, contour2, method, parameter) -> retval
matchTemplate(image, templ, method[, result]) -> result
max(src1, src2[, dst]) -> dst
mean(src[, mask]) -> retval
meanShift(probImage, window, criteria) -> retval, window
meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
medianBlur(src, ksize[, dst]) -> dst merge(mv[, dst]) -> dst
min(src1, src2[, dst]) -> dst
minAreaRect(points) -> retval
minEnclosingCircle(points) -> center, radius
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
mixChannels(src, dst, fromTo) -> None moments(array[, binaryImage]) -> retval
morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
moveWindow(winname, x, y) -> None
mulSpectrums(a, b, flags[, c[, conjB]]) -> c
mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst
multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst
namedWindow(winname[, flags]) -> None norm(src1[, normType[, mask]]) -> retval or norm(src1, src2[, normType[, mask]]) -> retval
normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst
patchNaNs(a[, val]) -> None
perspectiveTransform(src, m[, dst]) -> dst
phase(x, y[, angle[, angleInDegrees]]) -> angle
phaseCorrelate(src1, src2[, window]) -> retval
phaseCorrelateRes(src1, src2, window) -> retval, response pointPolygonTest(contour, pt, measureDist) -> retval
polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y
polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) -> None
pow(src, power[, dst]) -> dst
preCornerDetect(src, ksize[, dst[, borderType]]) -> dst
projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs[, imagePoints[, jacobian[, aspectRatio]]]) -> imagePoints, jacobian putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> None
pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst
pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst
pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst
randShuffle(dst[, iterFactor]) -> None
randn(dst, mean, stddev) -> None
randu(dst, low, high) -> None
rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> None rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags[, R1[, R2[, R3[, P1[, P2[, P3[, Q]]]]]]]) -> retval, R1, R2, R3, P1, P2, P3, Q, roi1, roi2
reduce(src, dim, rtype[, dst[, dtype]]) -> dst
remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst
repeat(src, ny, nx[, dst]) -> dst
reprojectImageTo3D(disparity, Q[, _3dImage[, handleMissingValues[, ddepth]]]) -> _3dImage resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst
resizeWindow(winname, width, height) -> None
scaleAdd(src1, alpha, src2[, dst]) -> dst
segmentMotion(mhi, timestamp, segThresh[, segmask]) -> segmask, boundingRects
sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst
setIdentity(mtx[, s]) -> None
setMouseCallback(windowName, onMouse [, param]) -> None
setTrackbarPos(trackbarname, winname, pos) -> None
setUseOptimized(onoff) -> None
setWindowProperty(winname, prop_id, prop_value) -> None solve(src1, src2[, dst[, flags]]) -> retval, dst
solveCubic(coeffs[, roots]) -> retval, roots
solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) -> retval, rvec, tvec solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, iterationsCount[, reprojectionError[, minInliersCount[, inliers[, flags]]]]]]]]) -> rvec, tvec, inliers solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
sort(src, flags[, dst]) -> dst
sortIdx(src, flags[, dst]) -> dst
split(m[, mv]) -> mv
sqrt(src[, dst]) -> dst
startWindowThread() -> retval stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize[, cameraMatrix1[, distCoeffs1[, cameraMatrix2[, distCoeffs2[, R[, T[, E[, F[, criteria[, flags]]]]]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, R1[, R2[, P1[, P2[, Q[, flags[, alpha[, newImageSize]]]]]]]]) -> R1, R2, P1, P2, Q, validPixROI1, validPixROI2 stereoRectifyUncalibrated(points1, points2, F, imgSize[, H1[, H2[, threshold]]]) -> retval, H1, H2
subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst
sumElems(src) -> retval
threshold(src, thresh, maxval, type[, dst]) -> retval, dst
trace(mtx) -> retval
transform(src, m[, dst]) -> dst transpose(src[, dst]) -> dst
triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) -> points4D
undistort(src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) -> dst
undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]]) -> dst
updateMotionHistory(silhouette, mhi, timestamp, duration) -> None useOptimized() -> retval
validateDisparity(disparity, cost, minDisparity, numberOfDisparities[, disp12MaxDisp]) -> None
vconcat(src[, dst]) -> dst waitKey([, delay]) -> retval
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
watershed(image, markers) -> None

总结:

对于CV2的使用,其主要类型是mat型,可以直接下标索引:如 Image [idxY] [idxX] = 65552

其中有一个疑惑的问题是:

对于resize的使用,  Image  =cv.resize(image,(w,h))    此句函数的使用会 导致:自动把Image 转化为3通道;这直接让我没有办法使用cv2了。


(二):引入Cv的使用方法:

引入cv2.cv 后,使用cv便可以找到几乎在cv2refman里面的所有函数了,此处不再列出,举个例子说明。

path ="D:/Develope/EclipseWorks/SLICSeg/Recog/ViewX_2.094395 ViewY_0.000000 ViewZ_6.141592.pcd_comb.pcd_label.txtNo_SLIC.png"
Image = cv.LoadImageM(path,2) # 原始图像载入,参数为1 会转化为 三通道,8bit
cv.ShowImage("name", Image)
cv.WaitKey(0)
ImageHeight= Image.height  #Image.shape[0]  #Iplimage 没有shape属性!
ImageWidth = Image.width cv.Size = (Image.width, Image.height)
cv.Size = cv.GetSize(Image) ImagePatch = cv.CreateImage(cv.Size,16, 1)
cv.Copy(Image, ImagePatch)#copy大小必须一致!
cv.SetImageROI(ImagePatch,(0,0,Image.width/2,Image.height/2))
path ="Patch2/"+ "path_"+ “76”+"_" + "S_posX" +"_Image.png"
cv.SaveImage(path,ImagePatch)
cv.ShowImage("name", ImagePatch)
cv.WaitKey(0) ImagePatch = cv.CreateImage((320,240), 16, 1)
cv.Resize(Image, ImagePatch, cv.CV_INTER_LINEAR)
rows = Image.height
cols = Image.width
Mat = cv.CreateMat(rows, cols, cv.CV_16UC1)
cv.Convert(Image, Mat)
Image[24,25] =0 #对于单通道图像
ImagePatch = cv.CreateImage(cv.Size,8, 3)
ImagePatch[24,25][2] =255#对于三通道图像

至此,基本语法讲解告一段落!

Python中OpenCV2. VS. CV1的更多相关文章

  1. [转]Python中的str与unicode处理方法

    早上被python的编码搞得抓耳挠腮,在搜资料的时候感觉这篇博文很不错,所以收藏在此. python2.x中处理中文,是一件头疼的事情.网上写这方面的文章,测次不齐,而且都会有点错误,所以在这里打算自 ...

  2. python中的Ellipsis

    ...在python中居然是个常量 print(...) # Ellipsis 看别人怎么装逼 https://www.keakon.net/2014/12/05/Python%E8%A3%85%E9 ...

  3. python中的默认参数

    https://eastlakeside.gitbooks.io/interpy-zh/content/Mutation/ 看下面的代码 def add_to(num, target=[]): tar ...

  4. Python中的类、对象、继承

    类 Python中,类的命名使用帕斯卡命名方式,即首字母大写. Python中定义类的方式如下: class 类名([父类名[,父类名[,...]]]): pass 省略父类名表示该类直接继承自obj ...

  5. python中的TypeError错误解决办法

    新手在学习python时候,会遇到很多的坑,下面来具体说说其中一个. 在使用python编写面向对象的程序时,新手可能遇到TypeError: this constructor takes no ar ...

  6. python中的迭代、生成器等等

    本人对编程语言实在是一窍不通啊...今天看了廖雪峰老师的关于迭代,迭代器,生成器,递归等等,word天,这都什么跟什么啊... 1.关于迭代 如果给定一个list或tuple,我们可以通过for循环来 ...

  7. python2.7高级编程 笔记二(Python中的描述符)

    Python中包含了许多内建的语言特性,它们使得代码简洁且易于理解.这些特性包括列表/集合/字典推导式,属性(property).以及装饰器(decorator).对于大部分特性来说,这些" ...

  8. python cookbook 学习系列(一) python中的装饰器

    简介 装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓 ...

  9. 用 ElementTree 在 Python 中解析 XML

    用 ElementTree 在 Python 中解析 XML 原文: http://eli.thegreenplace.net/2012/03/15/processing-xml-in-python- ...

随机推荐

  1. html第三节课

    表单 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.o ...

  2. 自己总结的php开发中用到的工具

    需要一个编辑器IDE,推荐用phpstorm. IDE安装完了,还要搞个Xdebug,这个很有用,程序断点跟踪调试就靠他了. phpstom平时使用的时候,编辑界面感觉很枯燥的时候,可以换个主题,换主 ...

  3. 数据持久层(DAO)通用API的实现

    在Web开发中,一般都分3层.Controller/Action 控制层,Service/Business 服务层/业务逻辑层,Dao 数据访问层/数据持久层. 在学习和工作的实践过程中,我发现很多功 ...

  4. 在Win32 Application 环境下实现MFC窗口的创建

    // Win32下MFC.cpp : Defines the entry point for the application.// #include "stdafx.h" clas ...

  5. 关于约束ENABLE NOVALIDATE的一个疑问

    http://www.dbunix.com/?p=188 关于约束ENABLE NOVALIDATE的一个疑问 CREATE TABLE test (id varchar2(12), name var ...

  6. wcf--知识点

    WCF创建自托管服务 //自托管 WCF服务 //1.创建宿主 ServiceHost host = new ServiceHost(typeof(TaoBaoWCFServiceContract.T ...

  7. COGS——C1176. [郑州101中学] 月考

    http://cogs.pro/cogs/problem/problem.php?pid=1176 [题目描述] 在上次的月考中Bugall同学违反了考场纪律还吃了处分,更可气的是在第二天的校会时 间 ...

  8. [Javascript] Understand common misconceptions about ES6's const keyword

    Values assigned with let and const are seen everywhere in JavaScript. It's become common to hear the ...

  9. vmware mac 分辨率设置

    1.安装vmware tool 2.关闭虚拟机,在设置中找到显示器项 3.选中“加速3D图形” 4.在监视器中,选中 指定监视器设置,使用任意分辨率 5.如果没有可用分辨率,手动输入,例如 1680* ...

  10. 2016.04.19,英语,《Vocabulary Builder》Unit 16

    top, comes from topos, the Greek word for 'place'. ectopic: [ek'tɑːpɪk] adj. [医]异位的,异常的 topical: ['t ...