之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。

1. scikit-learn 朴素贝叶斯类库概述

    朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

    这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

2. GaussianNB类使用总结

    GaussianNB假设特征的先验概率为正态分布,即如下式:

$$P(X_j=x_j|Y=C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}}exp\Bigg{(}-\frac{(x_j - \mu_k)^2}{2\sigma_k^2}\Bigg{)}$$

    其中$C_k$为Y的第k类类别。$\mu_k和\sigma_k^2$为需要从训练集估计的值。

    GaussianNB会根据训练集求出$\mu_k和\sigma_k^2$。 $\mu_k$为在样本类别$C_k$中,所有$X_j$的平均值。$\sigma_k^2$为在样本类别$C_k$中,所有$X_j$的方差。

    GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率$P(Y=C_k)$。这个值默认不给出,如果不给出此时$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。如果给出的话就以priors 为准。

    在使用GaussianNB的fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。

    predict方法就是我们最常用的预测方法,直接给出测试集的预测类别输出。

    predict_proba则不同,它会给出测试集样本在各个类别上预测的概率。容易理解,predict_proba预测出的各个类别概率里的最大值对应的类别,也就是predict方法得到类别。

    predict_log_proba和predict_proba类似,它会给出测试集样本在各个类别上预测的概率的一个对数转化。转化后predict_log_proba预测出的各个类别对数概率里的最大值对应的类别,也就是predict方法得到类别。

    下面给一个具体的例子,代码如下,亦可见我的github

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
#拟合数据
clf.fit(X, Y)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))

    结果如下:

==Predict result by predict==
[1]
==Predict result by predict_proba==
[[ 9.99999949e-01 5.05653254e-08]]
==Predict result by predict_log_proba==
[[ -5.05653266e-08 -1.67999998e+01]]

    从上面的结果可以看出,测试样本[-0.8,-1]的类别预测为类别1。具体的测试样本[-0.8,-1]被预测为1的概率为9.99999949e-01 ,远远大于预测为2的概率5.05653254e-08。这也是为什么最终的预测结果为1的原因了。

    此外,GaussianNB一个重要的功能是有 partial_fit方法,这个方法的一般用在如果训练集数据量非常大,一次不能全部载入内存的时候。这时我们可以把训练集分成若干等分,重复调用partial_fit来一步步的学习训练集,非常方便。后面讲到的MultinomialNB和BernoulliNB也有类似的功能。

3. MultinomialNB类使用总结

    MultinomialNB假设特征的先验概率为多项式分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = \frac{x_{jl} + \lambda}{m_k + n\lambda}$$

    其中,$P(X_j=x_{jl}|Y=C_k)$是第k个类别的第j维特征的第l个个取值条件概率。$m_k$是训练集中输出为第k类的样本个数。$\lambda$ 为一个大于0的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。

    MultinomialNB参数比GaussianNB多,但是一共也只有仅仅3个。其中,参数alpha即为上面的常数$\lambda$,如果你没有特别的需要,用默认的1即可。如果发现拟合的不好,需要调优时,可以选择稍大于1或者稍小于1的数。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。总结如下:

fit_prior class_prior 最终先验概率
false 填或者不填没有意义 $P(Y=C_k) = 1/k$
true 不填 $P(Y=C_k) = m_k/m$
true $P(Y=C_k) = $class_prior

    在使用MultinomialNB的fit方法或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。 

4. BernoulliNB类使用总结

    BernoulliNB假设特征的先验概率为二元伯努利分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = P(j|Y=C_k)x_{jl} + (1 - P(j|Y=C_k)(1-x_{jl}) $$

    此时$l$只有两种取值。$x_{jl}$只能取值0或者1。

    BernoulliNB一共有4个参数,其中3个参数的名字和意义和MultinomialNB完全相同。唯一增加的一个参数是binarize。这个参数主要是用来帮BernoulliNB处理二项分布的,可以是数值或者不输入。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的。否则的话,小于binarize的会归为一类,大于binarize的会归为另外一类。

    在使用BernoulliNB的fit或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。

    以上就是scikit-learn 朴素贝叶斯类库的使用的经验总结。希望可以帮到朋友们。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

scikit-learn 朴素贝叶斯类库使用小结的更多相关文章

  1. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  2. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

  3. NLP系列(2)_用朴素贝叶斯进行文本分类(上)

    作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...

  4. NLP系列(3)_用朴素贝叶斯进行文本分类(下)

    作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...

  5. 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3

    一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...

  6. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  7. 朴素贝叶斯python小样本实例

    朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据朴素贝叶斯决策理论的核心思想:选择具有最高概率的决策朴素贝叶斯的一般过程(1) ...

  8. 3.朴素贝叶斯和KNN算法的推导和python实现

    前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...

  9. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

随机推荐

  1. 可变字符串NSMutableString

    //可变字符串继承自字符串 //拼接 NSMutableString *string = [NSMutableString string]; [string appendString:@"今 ...

  2. javascript 创建对象的7种模式

    使用字面量方式创建一个 student 对象: var student = function (){ name : "redjoy", age : 21, sex: women, ...

  3. webstorm2016注册码

    43B4A73YYJ-eyJsaWNlbnNlSWQiOiI0M0I0QTczWVlKIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  4. [LintCode] Container With Most Water 装最多水的容器

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

  5. Python之路第一课Day6--随堂笔记(面向对象 )

    本节内容: 1. 面向对象编程介绍 2. 为什么要用面向对象进行开发? 3. 面向对象的特性:封装.继承.多态 4. 类.方法   一.面向过程 VS 面向对象  1. 编程范式 编程是 程序 员 用 ...

  6. .Net程序员之不学Java做安卓开发:Android Studio中的即时调试窗口

    对学.Net的人来说,JAVA开发是一场噩梦. .net中的即时窗口,调试时直接在里面写代码,对程序中的各种方法/属性进行调用,很方便. Android Studio中找了好久,参考如下网址,也有类似 ...

  7. Ubuntu中的快捷键

    Ubuntu中的许多操作在终端(Terminal)中十分的快捷,记住一些快捷键的操作更得心应手. 在Ubuntu中打开终端的快捷键是Ctrl+Alt+T.其他的一些常用的快捷键如下: 快捷键 功能 T ...

  8. SQL语句大全

    经典SQL语句大全(绝对的经典) 一.基础 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop database dbname3.说明:备份s ...

  9. Struts2中method={1}

    <action name="Person_*" class="com.action.PersonAction" method="{1}" ...

  10. Git 常用命令大全

    Git常用操作命令: 1) 远程仓库相关命令 检出仓库:$ git clone git://github.com/jquery/jquery.git 查看远程仓库:$ git remote -v 添加 ...