之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结。这里我们就从实战的角度来看朴素贝叶斯类库。重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择。

1. scikit-learn 朴素贝叶斯类库概述

    朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

    这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

2. GaussianNB类使用总结

    GaussianNB假设特征的先验概率为正态分布,即如下式:

$$P(X_j=x_j|Y=C_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}}exp\Bigg{(}-\frac{(x_j - \mu_k)^2}{2\sigma_k^2}\Bigg{)}$$

    其中$C_k$为Y的第k类类别。$\mu_k和\sigma_k^2$为需要从训练集估计的值。

    GaussianNB会根据训练集求出$\mu_k和\sigma_k^2$。 $\mu_k$为在样本类别$C_k$中,所有$X_j$的平均值。$\sigma_k^2$为在样本类别$C_k$中,所有$X_j$的方差。

    GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率$P(Y=C_k)$。这个值默认不给出,如果不给出此时$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。如果给出的话就以priors 为准。

    在使用GaussianNB的fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。

    predict方法就是我们最常用的预测方法,直接给出测试集的预测类别输出。

    predict_proba则不同,它会给出测试集样本在各个类别上预测的概率。容易理解,predict_proba预测出的各个类别概率里的最大值对应的类别,也就是predict方法得到类别。

    predict_log_proba和predict_proba类似,它会给出测试集样本在各个类别上预测的概率的一个对数转化。转化后predict_log_proba预测出的各个类别对数概率里的最大值对应的类别,也就是predict方法得到类别。

    下面给一个具体的例子,代码如下,亦可见我的github

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
#拟合数据
clf.fit(X, Y)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))

    结果如下:

==Predict result by predict==
[1]
==Predict result by predict_proba==
[[ 9.99999949e-01 5.05653254e-08]]
==Predict result by predict_log_proba==
[[ -5.05653266e-08 -1.67999998e+01]]

    从上面的结果可以看出,测试样本[-0.8,-1]的类别预测为类别1。具体的测试样本[-0.8,-1]被预测为1的概率为9.99999949e-01 ,远远大于预测为2的概率5.05653254e-08。这也是为什么最终的预测结果为1的原因了。

    此外,GaussianNB一个重要的功能是有 partial_fit方法,这个方法的一般用在如果训练集数据量非常大,一次不能全部载入内存的时候。这时我们可以把训练集分成若干等分,重复调用partial_fit来一步步的学习训练集,非常方便。后面讲到的MultinomialNB和BernoulliNB也有类似的功能。

3. MultinomialNB类使用总结

    MultinomialNB假设特征的先验概率为多项式分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = \frac{x_{jl} + \lambda}{m_k + n\lambda}$$

    其中,$P(X_j=x_{jl}|Y=C_k)$是第k个类别的第j维特征的第l个个取值条件概率。$m_k$是训练集中输出为第k类的样本个数。$\lambda$ 为一个大于0的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。

    MultinomialNB参数比GaussianNB多,但是一共也只有仅仅3个。其中,参数alpha即为上面的常数$\lambda$,如果你没有特别的需要,用默认的1即可。如果发现拟合的不好,需要调优时,可以选择稍大于1或者稍小于1的数。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为$P(Y=C_k) = m_k/m$。其中m为训练集样本总数量,$m_k$为输出为第k类别的训练集样本数。总结如下:

fit_prior class_prior 最终先验概率
false 填或者不填没有意义 $P(Y=C_k) = 1/k$
true 不填 $P(Y=C_k) = m_k/m$
true $P(Y=C_k) = $class_prior

    在使用MultinomialNB的fit方法或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。 

4. BernoulliNB类使用总结

    BernoulliNB假设特征的先验概率为二元伯努利分布,即如下式:

$$P(X_j=x_{jl}|Y=C_k) = P(j|Y=C_k)x_{jl} + (1 - P(j|Y=C_k)(1-x_{jl}) $$

    此时$l$只有两种取值。$x_{jl}$只能取值0或者1。

    BernoulliNB一共有4个参数,其中3个参数的名字和意义和MultinomialNB完全相同。唯一增加的一个参数是binarize。这个参数主要是用来帮BernoulliNB处理二项分布的,可以是数值或者不输入。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的。否则的话,小于binarize的会归为一类,大于binarize的会归为另外一类。

    在使用BernoulliNB的fit或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。

    以上就是scikit-learn 朴素贝叶斯类库的使用的经验总结。希望可以帮到朋友们。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

scikit-learn 朴素贝叶斯类库使用小结的更多相关文章

  1. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  2. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

  3. NLP系列(2)_用朴素贝叶斯进行文本分类(上)

    作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...

  4. NLP系列(3)_用朴素贝叶斯进行文本分类(下)

    作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...

  5. 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3

    一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...

  6. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  7. 朴素贝叶斯python小样本实例

    朴素贝叶斯优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感适用数据类型:标称型数据朴素贝叶斯决策理论的核心思想:选择具有最高概率的决策朴素贝叶斯的一般过程(1) ...

  8. 3.朴素贝叶斯和KNN算法的推导和python实现

    前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...

  9. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

随机推荐

  1. UVA103 dp基础题,DAG模型

    1.UVA103 嵌套n维空间 DAG模型记忆化搜索,或者 最长上升子序列. 2.dp[i]=max( dp[j]+1),(第i个小于第j个) (1) //DAG模型记忆化搜索 #include< ...

  2. JS中检测数据类型的几种方式及优缺点【转】

    1.typeof 用来检测数据类型的运算符 typeof value 返回值首先是一个字符串,其次里面包含了对应的数据类型,例如:"number"."string&quo ...

  3. html+css笔记

    文档结构 1.html文档结构 ①文档类型声明 严格型(标准模式):    <!DOCTYpE HTML>   HTML5 XHTML 1.0:<!DOCTYpE html pUbL ...

  4. sql筛选查询A表中B表已经存在的数据

    SELECT *FROM A LEFT OUTER JOIN B ON A.ID = B.IDWHERE B.ID IS NULL 开发实例: SELECT Position_Car.Area, Po ...

  5. 李洪强iOS经典面试题153- 补充

    李洪强iOS经典面试题153- 补充   补充 有空就来解决几个问题,已经懒癌晚期没救了... UML 统一建模语言(UML,UnifiedModelingLanguage)是面向对象软件的标准化建模 ...

  6. Python模块之day4

    模块,代码归类实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才能 ...

  7. ajax知识整理

    HTTP服务 1.服务器 服务器类型 服务类型:文件服务器.数据库服务器.邮件服务器.Web服务器等: 操作系统:Linux服务器.Windows服务器等: 应用软件:Apache服务器.Nginx ...

  8. dom初识

    1什么是dom document object model文档对象模型 是将整个页面文档封装成了一个对象,就是一个文档对象 整个页面就是一个文档,是由很多的节点组成的节点又包括三部分: 元素 属性 文 ...

  9. 安装subversion

    安装subversion需要依赖apr.apr-util.sqlite 下载安装包,放在/usr/file目录 subversion-1.9.4.tar.gz apr-1.5.2.tar.gz apr ...

  10. Lesson 8 The best and the worst

    Text Joe Sanders has the most beautiful garden in our town. Nearly everbody enters for 'The Nicest G ...