摘自:http://www.voidcn.com/article/p-ntafyhkn-zc.html

(二)LSTM模型

1.长短期记忆模型(long-short term memory)是一种特殊的RNN模型,是为了解决RNN模型梯度弥散的问题而提出的;在传统的RNN中,训练算法使用的是BPTT,当时间比较长时,需要回传的残差会指数下降,导致网络权重更新缓慢,无法体现出RNN的长期记忆的效果,因此需要一个存储单元来存储记忆,因此LSTM模型被提出;

2.下面两个图可以看出RNN与LSTM的区别:

(1)RNN

(2)LSTM

PS:

(1)部分图形含义如下:

(2)RNN与LSTM最大的区别在于LSTM中最顶层多了一条名为“cell state”的信息传送带,其实也就是信息记忆的地方;

3.LSTM的核心思想:

(1)理解LSTM的核心是“cell state”,暂且名为细胞状态,也就是上述图中最顶的传送线,如下:

(2)cell state也可以理解为传送带,个人理解其实就是整个模型中的记忆空间,随着时间而变化的,当然,传送带本身是无法控制哪些信息是否被记忆,起控制作用的是下面将讲述的控制门(gate);

(3)控制门的结构如下:主要由一个sigmoid函数跟点乘操作组成;sigmoid函数的值为0-1之间,点乘操作决定多少信息可以传送过去,当为0时,不传送,当为1时,全部传送;

(4)LSTM中有3个控制门:输入门,输出门,记忆门;

4.LSTM工作原理:

(1)forget gate:选择忘记过去某些信息:

(2)input gate:记忆现在的某些信息:

(3)将过去与现在的记忆进行合并:

(4)output gate:输出

PS:以上是标准的LSTM的结构,实际应用中常常根据需要进行稍微改善;

5.LSTM的改善

(1)peephole connections:为每个门的输入增加一个cell state的信号

(2)coupled forget and input gates:合并忘记门与输入门

LSTM模型的更多相关文章

  1. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  2. LSTM模型与前向反向传播算法

    在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long ...

  3. TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人

    简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...

  4. 文本分类实战(七)—— Adversarial LSTM模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  5. 3. RNN神经网络-LSTM模型结构

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 之前我们对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数 ...

  6. Keras下的文本情感分析简介。与MLP,RNN,LSTM模型下的文本情感测试

    # coding: utf-8 # In[1]: import urllib.request import os import tarfile # In[2]: url="http://ai ...

  7. 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...

  8. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  9. TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人。

    简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为 ...

随机推荐

  1. [HDU5687]2016"百度之星" - 资格赛 Problem C

    题目大意:有n个操作,每个操作是以下三个之一,要你实现这些操作. 1.insert : 往字典中插入一个单词2.delete: 在字典中删除所有前缀等于给定字符串的单词3.search: 查询是否在字 ...

  2. logstash-shipper.conf

    input { file { path => '/data/rsyslog/*/*/*.log' start_position => 'beginning' sincedb_path =& ...

  3. cogs 181. [USACO Jan07] 最高的牛

    181. [USACO Jan07] 最高的牛 ★★   输入文件:tallest.in   输出文件:tallest.out   简单对比时间限制:1 s   内存限制:32 MB FJ's N ( ...

  4. DataTable 数据导入MS ACCESS 数据库中 数字类型字段为空的解决办法

    string strSql = "insert into GongCheng (GCSY,GCBH,GCBHOLD,GCMC,GCKCJD,GCJSDW,GCSJDW,GCKCDW,GCSG ...

  5. Qt之QPushButton

    简述 前面章节我们分享过Qt之QAbstractButton,讲解了QAbstractButton的基本用法,本节着重讲解QPushButton. 简述 常用状态 效果 源码 QSS 更多参考 关于Q ...

  6. Python中文字符问题

    Python中对中文字符的操作时常会使程序出现乱码 不全然管用的处理方法: 读取数据时使用encode编码为Bytes以保护数据 使用时转化为string并使用decode解码 如: title = ...

  7. hdu 2037 贪心

    今年暑假不AC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  8. spark groupByKey 也是可以filter的

    >>> v=sc.parallelize(["one", "two", "two", "three", ...

  9. 9-第一个app项目

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  10. POJ 1631 nlogn求LIS

    方法一: 二分 我们可以知道 最长上升子序列的 最后一个数的值是随序列的长度而递增的 (呃呃呃 意会意会) 然后我们就可以二分找值了(并更新) //By SiriusRen #include < ...