Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

 
Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 
Output
A single number, meaning the mininum cost to print the article.
 
Sample Input
5 5 5 9 5 7 5
 
Sample Output
230
 
Author
Xnozero
 
Source

大致题意:要打印一长串词语,每个词语有一个对应的打印费用Ci,要给词语分行,一行的总费用记为,M是给定的常数

要求计算一种分行方案使得总费用最小。

数据规模50万。

分析:首先可以想到枚举上一次断行处,这样可以得到最初的状态转移方程:

,复杂度为O(n^2)。

观察一下数据规模为50万,需要优化。

主要思路是考虑淘汰肯定对最优答案没有贡献的点。

将状态转移方程展开:

(注:公式和图来自BIG YAO学长)

移项可得:

                    

观察到蓝色字体部分只与j有关,绿色字体对给定的i为常量,红色字体部分取最小的时候dp[i]取最小。

将蓝色字体视为y(j),sum[j]视为x(j),问题就转化为对平面上无数个点(x,y),对每一个i,找出一个最优点(x0,y0),使得一条通过该点,斜率为k=2sum[i]的直线的截距最小。

放张图表现一下优化情况:

维护一个队列,即为下凸折线上点的队列,每次寻找最优的j的时候只在队列里的点找。(注意取得最优点的时候相邻的两根折线的斜率对于k=2sum[i]一大一小)

以下具体讨论怎么实现:

i不断向前推进,每次循环做两件事情:

1,找出对于dp[i]最优的上一个断行处j

如果队列上该点i和他后面的那个店形成的斜率小于k=2*sum[i]就头指针+1。

注意由于随i的递增,k=2*sum[i]必然递增,所以出队的点就不需要回来了

2,把i放入队列后就不再需要的点淘汰掉:

一旦出现3个点呈这样,即可淘汰点2,因为:直线经过点4的截距必然小于经过点2的截距,而经过点4的截距必然小于经过点1或点3的截距。

从而经过点2的截距必然小于小1或点3的截距,点2不可能为最优点,可淘汰。

然后把i放入队列(注意sum[i]为严格递增的,所以i个点中最后一个点必然在“外围”,不会被淘汰)

 #include<cstdio>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
const int MAXN=;
long long int dp[MAXN],q[MAXN],sum[MAXN];
int n,m;
inline long long int getdp(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
inline long long int gety(int x,int y)
{
return dp[x]+sum[x]*sum[x]-dp[y]-sum[y]*sum[y];
}
inline long long int getx(int x,int y)
{
return *sum[x]-*sum[y];
}
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m)==)
{
sum[]=;
rep(i,,n)
{
scanf("%lld",&sum[i]);
sum[i]=sum[i-]+sum[i];
}
dp[]=;
int head,tail;
tail=;
head=;
q[tail]=; //虚拟制造一个点0,若0点最优代表把所有词语分成一行最优
rep(i,,n)
{
while(head+<=tail&&(gety(q[head+],q[head])<=sum[i]*getx(q[head+],q[head]))) head++; //寻找对于i最好的上一次分行的截止点
dp[i]=getdp(i,q[head]);
while(head+<=tail&&gety(i,q[tail])*getx(q[tail],q[tail-])<=gety(q[tail],q[tail-])*getx(i,q[tail])) tail--; //i放入队列后需要淘汰的点
q[++tail]=i; //把i放入队列
}
printf("%lld\n",dp[n]);
}
return ;
}

斜率DP hdu 3507的更多相关文章

  1. hdu 3507 斜率dp

    不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...

  2. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  3. 斜率dp A - Print Article HDU - 3507

    A - Print Article HDU - 3507 今天刚刚学习了一下斜率dp,感觉还ok,主要就是要推这个斜率,然后利用数据结构来优化. 推荐两篇写的比较好的博客,https://www.cn ...

  4. HDU 3507 Print Article(斜率优化DP)

    题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...

  5. HDU 3507 单调队列 斜率优化

    斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...

  6. B - Lawrence HDU - 2829 斜率dp dp转移方程不好写

    B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...

  7. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  8. HDU 2829 - Lawrence - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...

  9. HDU 2993 - MAX Average Problem - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 Consider a simple sequence which only contains p ...

随机推荐

  1. jquery-ajax实现文件上传异常处理web.multipart.MultipartException

    异常如下: org.springframework.web.multipart.MultipartException: The current request is not a multipart r ...

  2. QBC查询、离线条件查询(DetachedCriteric)和分页查询模版

    一.QBC检索步骤 QBC检索步骤: 1.调用Session的createCriteria()方法创建一个Criteria对象. 2.设定查询条件.Expression类提供了一系列用于设定查询条件的 ...

  3. (转)ZXing生成二维码和带logo的二维码,模仿微信生成二维码效果

    场景:移动支付需要对二维码的生成与部署有所了解,掌握目前主流的二维码生成技术. 1 ZXing 生成二维码 首先说下,QRCode是日本人开发的,ZXing是google开发,barcode4j也是老 ...

  4. 【HTML】dl dt dd

    摘要 看到没怎么使用过的html 标签,记录下 定义 dl 类似于 ul ,无任何样式,自定义列表容器, ul 为无序列表容器,ol 为有序列表容器 dt dd 类似于 li ,无任何样式,为帮助实现 ...

  5. python学习好文

    摘要: 学习别人的学习历程. 一 iTech的博客 http://www.cnblogs.com/itech/archive/2011/01/31/1948265.html

  6. MySQL学习笔记(二):MySQL数据类型汇总及选择参考

    本文主要介绍了MySQL 的常用数据类型,以及实际应用时如何选择合适的类型.  ******几个通用的简单原则:******* 1. 更小的通常更好.但是要确保没有低估需要存储的值的范围,如果无法确定 ...

  7. Java单线程文件下载,支持断点续传功能

    前言: 程序下载文件时,有时会因为各种各样的原因下载中断,对于小文件来说影响不大,可以快速重新下载,但是下载大文件时,就会耗费很长时间,所以断点续传功能对于大文件很有必要. 文件下载的断点续传: 1. ...

  8. RabbitMQ入门-高效的Work模式

    扛不住的Hello World模式 上篇<RabbitMQ入门-从HelloWorld开始>介绍了RabbitMQ中最基本的Hello World模型.正如其名,Hello World模型 ...

  9. Hibernate 中Criteria Query查询详解【转】

    当查询数据时,人们往往需要设置查询条件.在SQL或HQL语句中,查询条件常常放在where子句中.此外,Hibernate还支持Criteria查询(Criteria Query),这种查询方式把查询 ...

  10. “军装照”背后——天天P图如何应对10亿流量的后台承载。

    WeTest 导读 天天P图"军装照"活动交出了一份10亿浏览量的答卷,一时间刷屏朋友圈,看到这幕,是不是特别想复制一个如此成功的H5?不过本文不教你如何做一个爆款H5,而是介绍天 ...