Ta-lib函数功能列表
import tkinter as tk from tkinter import ttk import matplotlib.pyplot as plt import numpy as np import talib as ta series = np.random.choice([1, -1], size=200) close = np.cumsum(series).astype(float) # 重叠指标 def overlap_process(event): print(event.widget.get()) overlap = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(overlap, fontproperties="SimHei") if overlap == '布林线': pass elif overlap == '双指数移动平均线': real = ta.DEMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '指数移动平均线 ': real = ta.EMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '希尔伯特变换——瞬时趋势线': real = ta.HT_TRENDLINE(close) axes[1].plot(real, 'r-') elif overlap == '考夫曼自适应移动平均线': real = ta.KAMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '移动平均线': real = ta.MA(close, timeperiod=30, matype=0) axes[1].plot(real, 'r-') elif overlap == 'MESA自适应移动平均': mama, fama = ta.MAMA(close, fastlimit=0, slowlimit=0) axes[1].plot(mama, 'r-') axes[1].plot(fama, 'g-') elif overlap == '变周期移动平均线': real = ta.MAVP(close, periods, minperiod=2, maxperiod=30, matype=0) axes[1].plot(real, 'r-') elif overlap == '简单移动平均线': real = ta.SMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '三指数移动平均线(T3)': real = ta.T3(close, timeperiod=5, vfactor=0) axes[1].plot(real, 'r-') elif overlap == '三指数移动平均线': real = ta.TEMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '三角形加权法 ': real = ta.TRIMA(close, timeperiod=30) axes[1].plot(real, 'r-') elif overlap == '加权移动平均数': real = ta.WMA(close, timeperiod=30) axes[1].plot(real, 'r-') plt.show() # 动量指标 def momentum_process(event): print(event.widget.get()) momentum = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(momentum, fontproperties="SimHei") if momentum == '绝对价格振荡器': real = ta.APO(close, fastperiod=12, slowperiod=26, matype=0) axes[1].plot(real, 'r-') elif momentum == '钱德动量摆动指标': real = ta.CMO(close, timeperiod=14) axes[1].plot(real, 'r-') elif momentum == '移动平均收敛/散度': macd, macdsignal, macdhist = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) axes[1].plot(macd, 'r-') axes[1].plot(macdsignal, 'g-') axes[1].plot(macdhist, 'b-') elif momentum == '带可控MA类型的MACD': macd, macdsignal, macdhist = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) axes[1].plot(macd, 'r-') axes[1].plot(macdsignal, 'g-') axes[1].plot(macdhist, 'b-') elif momentum == '移动平均收敛/散度 固定 12/26': macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9) axes[1].plot(macd, 'r-') axes[1].plot(macdsignal, 'g-') axes[1].plot(macdhist, 'b-') elif momentum == '动量': real = ta.MOM(close, timeperiod=10) axes[1].plot(real, 'r-') elif momentum == '比例价格振荡器': real = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0) axes[1].plot(real, 'r-') elif momentum == '变化率': real = ta.ROC(close, timeperiod=10) axes[1].plot(real, 'r-') elif momentum == '变化率百分比': real = ta.ROCP(close, timeperiod=10) axes[1].plot(real, 'r-') elif momentum == '变化率的比率': real = ta.ROCR(close, timeperiod=10) axes[1].plot(real, 'r-') elif momentum == '变化率的比率100倍': real = ta.ROCR100(close, timeperiod=10) axes[1].plot(real, 'r-') elif momentum == '相对强弱指数': real = ta.RSI(close, timeperiod=14) axes[1].plot(real, 'r-') elif momentum == '随机相对强弱指标': fastk, fastd = ta.STOCHRSI(close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) axes[1].plot(fastk, 'r-') axes[1].plot(fastd, 'r-') elif momentum == '三重光滑EMA的日变化率': real = ta.TRIX(close, timeperiod=30) axes[1].plot(real, 'r-') plt.show() # 周期指标 def cycle_process(event): print(event.widget.get()) cycle = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(cycle, fontproperties="SimHei") if cycle == '希尔伯特变换——主要的循环周期': real = ta.HT_DCPERIOD(close) axes[1].plot(real, 'r-') elif cycle == '希尔伯特变换,占主导地位的周期阶段': real = ta.HT_DCPHASE(close) axes[1].plot(real, 'r-') elif cycle == '希尔伯特变换——相量组件': inphase, quadrature = ta.HT_PHASOR(close) axes[1].plot(inphase, 'r-') axes[1].plot(quadrature, 'g-') elif cycle == '希尔伯特变换——正弦曲线': sine, leadsine = ta.HT_SINE(close) axes[1].plot(sine, 'r-') axes[1].plot(leadsine, 'g-') elif cycle == '希尔伯特变换——趋势和周期模式': integer = ta.HT_TRENDMODE(close) axes[1].plot(integer, 'r-') plt.show() # 统计功能 def statistic_process(event): print(event.widget.get()) statistic = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(statistic, fontproperties="SimHei") if statistic == '线性回归': real = ta.LINEARREG(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归角度': real = ta.LINEARREG_ANGLE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归截距': real = ta.LINEARREG_INTERCEPT(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '线性回归斜率': real = ta.LINEARREG_SLOPE(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '标准差': real = ta.STDDEV(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') elif statistic == '时间序列预测': real = ta.TSF(close, timeperiod=14) axes[1].plot(real, 'r-') elif statistic == '方差': real = ta.VAR(close, timeperiod=5, nbdev=1) axes[1].plot(real, 'r-') plt.show() # 数学变换 def math_transform_process(event): print(event.widget.get()) math_transform = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(math_transform, fontproperties="SimHei") if math_transform == '反余弦': real = ta.ACOS(close) axes[1].plot(real, 'r-') elif math_transform == '反正弦': real = ta.ASIN(close) axes[1].plot(real, 'r-') elif math_transform == '反正切': real = ta.ATAN(close) axes[1].plot(real, 'r-') elif math_transform == '向上取整': real = ta.CEIL(close) axes[1].plot(real, 'r-') elif math_transform == '余弦': real = ta.COS(close) axes[1].plot(real, 'r-') elif math_transform == '双曲余弦': real = ta.COSH(close) axes[1].plot(real, 'r-') elif math_transform == '指数': real = ta.EXP(close) axes[1].plot(real, 'r-') elif math_transform == '向下取整': real = ta.FLOOR(close) axes[1].plot(real, 'r-') elif math_transform == '自然对数': real = ta.LN(close) axes[1].plot(real, 'r-') elif math_transform == '常用对数': real = ta.LOG10(close) axes[1].plot(real, 'r-') elif math_transform == '正弦': real = ta.SIN(close) axes[1].plot(real, 'r-') elif math_transform == '双曲正弦': real = ta.SINH(close) axes[1].plot(real, 'r-') elif math_transform == '平方根': real = ta.SQRT(close) axes[1].plot(real, 'r-') elif math_transform == '正切': real = ta.TAN(close) axes[1].plot(real, 'r-') elif math_transform == '双曲正切': real = ta.TANH(close) axes[1].plot(real, 'r-') plt.show() # 数学操作 def math_operator_process(event): print(event.widget.get()) math_operator = event.widget.get() upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) fig, axes = plt.subplots(2, 1, sharex=True) ax1, ax2 = axes[0], axes[1] axes[0].plot(close, 'rd-', markersize=3) axes[0].plot(upperband, 'y-') axes[0].plot(middleband, 'b-') axes[0].plot(lowerband, 'y-') axes[0].set_title(math_operator, fontproperties="SimHei") if math_operator == '指定的期间的最大值': real = ta.MAX(close, timeperiod=30) axes[1].plot(real, 'r-') elif math_operator == '指定的期间的最大值的索引': integer = ta.MAXINDEX(close, timeperiod=30) axes[1].plot(integer, 'r-') elif math_operator == '指定的期间的最小值': real = ta.MIN(close, timeperiod=30) axes[1].plot(real, 'r-') elif math_operator == '指定的期间的最小值的索引': integer = ta.MININDEX(close, timeperiod=30) axes[1].plot(integer, 'r-') elif math_operator == '指定的期间的最小和最大值': min, max = ta.MINMAX(close, timeperiod=30) axes[1].plot(min, 'r-') axes[1].plot(max, 'r-') elif math_operator == '指定的期间的最小和最大值的索引': minidx, maxidx = ta.MINMAXINDEX(close, timeperiod=30) axes[1].plot(minidx, 'r-') axes[1].plot(maxidx, 'r-') elif math_operator == '合计': real = ta.SUM(close, timeperiod=30) axes[1].plot(real, 'r-') plt.show() root = tk.Tk() # 第一行:重叠指标 rowframe1 = tk.Frame(root) rowframe1.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe1, text="重叠指标").pack(side=tk.LEFT) overlap_indicator = tk.StringVar() # 重叠指标 combobox1 = ttk.Combobox(rowframe1, textvariable=overlap_indicator) combobox1['values'] = ['布林线','双指数移动平均线','指数移动平均线 ','希尔伯特变换——瞬时趋势线', '考夫曼自适应移动平均线','移动平均线','MESA自适应移动平均','变周期移动平均线', '简单移动平均线','三指数移动平均线(T3)','三指数移动平均线','三角形加权法 ','加权移动平均数'] combobox1.current(0) combobox1.pack(side=tk.LEFT) combobox1.bind('<<ComboboxSelected>>', overlap_process) # 第二行:动量指标 rowframe2 = tk.Frame(root) rowframe2.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe2, text="动量指标").pack(side=tk.LEFT) momentum_indicator = tk.StringVar() # 动量指标 combobox2 = ttk.Combobox(rowframe2, textvariable=momentum_indicator) combobox2['values'] = ['绝对价格振荡器','钱德动量摆动指标','移动平均收敛/散度','带可控MA类型的MACD', '移动平均收敛/散度 固定 12/26','动量','比例价格振荡器','变化率','变化率百分比', '变化率的比率','变化率的比率100倍','相对强弱指数','随机相对强弱指标','三重光滑EMA的日变化率'] combobox2.current(0) combobox2.pack(side=tk.LEFT) combobox2.bind('<<ComboboxSelected>>', momentum_process) # 第三行:周期指标 rowframe3 = tk.Frame(root) rowframe3.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe3, text="周期指标").pack(side=tk.LEFT) cycle_indicator = tk.StringVar() # 周期指标 combobox3 = ttk.Combobox(rowframe3, textvariable=cycle_indicator) combobox3['values'] = ['希尔伯特变换——主要的循环周期','希尔伯特变换——主要的周期阶段','希尔伯特变换——相量组件', '希尔伯特变换——正弦曲线','希尔伯特变换——趋势和周期模式'] combobox3.current(0) combobox3.pack(side=tk.LEFT) combobox3.bind('<<ComboboxSelected>>', cycle_process) # 第四行:统计功能 rowframe4 = tk.Frame(root) rowframe4.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe4, text="统计功能").pack(side=tk.LEFT) statistic_indicator = tk.StringVar() # 统计功能 combobox4 = ttk.Combobox(rowframe4, textvariable=statistic_indicator) combobox4['values'] = ['贝塔系数;投资风险与股市风险系数','皮尔逊相关系数','线性回归','线性回归角度', '线性回归截距','线性回归斜率','标准差','时间序列预测','方差'] combobox4.current(0) combobox4.pack(side=tk.LEFT) combobox4.bind('<<ComboboxSelected>>', statistic_process) # 第五行:数学变换 rowframe5 = tk.Frame(root) rowframe5.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe5, text="数学变换").pack(side=tk.LEFT) math_transform = tk.StringVar() # 数学变换 combobox5 = ttk.Combobox(rowframe5, textvariable=math_transform_process) combobox5['values'] = ['反余弦','反正弦','反正切','向上取整','余弦','双曲余弦','指数','向下取整', '自然对数','常用对数','正弦','双曲正弦','平方根','正切','双曲正切'] combobox5.current(0) combobox5.pack(side=tk.LEFT) combobox5.bind('<<ComboboxSelected>>', math_transform_process) # 第六行:数学操作 rowframe6 = tk.Frame(root) rowframe6.pack(side=tk.TOP, ipadx=3, ipady=3) tk.Label(rowframe6, text="数学操作").pack(side=tk.LEFT) math_operator = tk.StringVar() # 数学操作 combobox6 = ttk.Combobox(rowframe6, textvariable=math_operator_process) combobox6['values'] = ['指定期间的最大值','指定期间的最大值的索引','指定期间的最小值','指定期间的最小值的索引', '指定期间的最小和最大值','指定期间的最小和最大值的索引','合计'] combobox6.current(0) combobox6.pack(side=tk.LEFT) combobox6.bind('<<ComboboxSelected>>', math_operator_process) root.mainloop()
原文:http://www.cnblogs.com/hhh5460/p/5602357.html
Ta-lib函数功能列表的更多相关文章
- 2-3 Sass的函数功能-列表函数
列表函数主要包括一些对列表参数的函数使用,主要包括以下几种: length($list):返回一个列表的长度值: nth($list, $n):返回一个列表中指定的某个标签值 join($list1, ...
- dir()函数:罗列出参数所有的功能列表
#coding=utf-8import sysprint dir(sys)#罗列出参数中所有的功能列表sys.__doc__#调用参数中的函数 #dir()函数扩展展详解python中dir()函数不 ...
- Python3:sorted()函数及列表中的sort()函数
一.sort,sorted函数介绍: Sort函数是list列表中的函数,而sorted可以对list或者iterator进行排序. 下面我们使用help来查看他们的用法及功能: sort: ...
- 2-2 Sass的函数功能-字符串与数字函数
Sass的函数简介 在 Sass 中除了可以定义变量,具有 @extend.%placeholder 和 mixins 等特性之外,还自备了一系列的函数功能.其主要包括: 字符串函数 数字函数 列表函 ...
- python协程函数应用 列表生成式 生成器表达式
协程函数应用 列表生成式 生成器表达式 一.知识点整理: 1.可迭代的:对象下有_iter_方法的都是可迭代的对象 迭代器:对象._iter_()得到的结果就是迭代器 迭代器的特性: 迭代器._n ...
- 【UEFI】---BIOS中对Guid的使用以及Lib函数的使用总结
---恢复内容开始--- BIOS发展至今传统的汇编实现早已被抛弃,UEFI作为目前一套主流的标准定义接口,被广泛使用.之前被一些有关GUID和一些Lib函数的使用以及跨Pkg调用给折腾的不行,每次改 ...
- Android 手机卫士--设置界面&功能列表界面跳转逻辑处理
在<Android 手机卫士--md5加密过程>中已经实现了加密类,这里接着实现手机防盗功能 本文地址:http://www.cnblogs.com/wuyudong/p/5941959. ...
- oracle实现split函数功能
转载: http://blog.csdn.net/jojo52013145/article/details/6758279在实际的应用中,为了让PL/SQL 函数返回数据的多个行,必须通过返回一个 R ...
- 模拟实现兼容低版本IE浏览器的原生bind()函数功能
模拟实现兼容低版本IE浏览器的原生bind()函数功能: 代码如下: if(!Function.prototype.bind){ Function.prototype.bind=function( ...
随机推荐
- Oracle 10gR2分析函数
Oracle 10gR2分析函数汇总 (Translated By caizhuoyi 2008‐9‐19) 说明: 1. 原文中底色为黄的部分翻译存在商榷之处,请大家踊跃提意见: 2. 原文中淡 ...
- Java Swing intro
Java Swing intro 如果有Android app开发经验,快速上手Swing不是问题.UI方面有相似的地方. 简单的几行代码就能抛出一个框框,记录一下操作过程 1.先显示一个框框 Era ...
- 动态语言的灵活性是把双刃剑 -- 以Python语言为例
本文有些零碎,总题来说,包括两个问题:(1)可变对象(最常见的是list dict)被意外修改的问题,(2)对参数(parameter)的检查问题.这两个问题,本质都是因为动态语言(动态类型语言)的特 ...
- STF,docker学习资料整理
- THINKPHP 3.2 PHP SFTP上传下载 代码实现方法
一.SFTP介绍:使用SSH协议进行FTP传输的协议叫SFTP(安全文件传输)Sftp和Ftp都是文件传输协议.区别:sftp是ssh内含的协议(ssh是加密的telnet协议), 只要sshd服 ...
- (转).tar.gz文件和.rpm文件的区别
场景:在Linux环境下安装软件时候总是会遇到安装软件格式的选择,以及安装. 1 软件的二进制分发 Linux软件的二进制分发是指事先已经编译好二进制形式的软件包的发布形式, 其优点是安装使用容易,缺 ...
- Java中使用POI读取大的Excel文件或者输入流时发生out of memory异常参考解决方案
注意:此参考解决方案只是针对xlsx格式的excel文件! 背景 前一段时间遇到一种情况,服务器经常宕机,而且没有规律性,查看GC日志发生了out of memory,是堆溢出导致的,分析了一下堆的d ...
- pygal的简单使用
pygal的简单使用 例子来自此书: <Python编程从入门到实战>[美]Eric Matthes pygal是一个SVG图表库.SVG是一种矢量图格式.全称Scalable Vecto ...
- zabbix前台jsrpc注入
zabbix是一个开源的企业级性能监控解决方案. 官方网站:http://www.zabbix.com zabbix的jsrpc的profileIdx2参数存在insert方式的SQL注入漏洞,攻击者 ...
- Django 1.9 admin 使用suit 小记
最近项目做到了后台管理的部分.Django虽然提供了后台管理,但是界面不咋好看.所以我使用了suit.官网http://djangosuit.com/ 步骤: 1,安装suit 项目settings. ...