题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2955

题目:

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 
Input
 
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
 
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 
Sample Input
 
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
 
2
4
6
 
题意:
给定一个概率,被抓的概率要小于它。然后给出若干个银行的金额和抢劫被抓的概率。求在满足被抓概率小于所给概率的情况下,能获得的最大金额数。
 
思路:
概率dp题。被抓的情况有很多种,不好一个个去算,所以我们换个角度来计算,即P(被抓)=1-P(逃脱),最后用1-P(逃脱)< P(给定的)来判定。这道题显然是将金额当做背包容量,求得在获得金额相同时,逃脱的概率最大。
状态转移:dp[j]=max(dp[j], dp[j-bank[i].m]*(1-bank[i].p));我们让dp[0]=1,则第一次抢劫一个银行时,则逃脱的概率就等于1-P(被抓)。
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
double dp[];
double p;
struct node{
int m;
double p;
}bank[];
int main(){
int t;
scanf("%d",&t);
while (t--) {
int total=;
memset(dp, , sizeof(dp));
scanf("%lf%d",&p,&n);
for (int i=; i<n; i++){
scanf("%d%lf",&bank[i].m,&bank[i].p);
total+=bank[i].m;//算出不计概率的情况下,金额总数
}
dp[]=;
for (int i=; i<n; i++) {
for (int j=total; j>=bank[i].m; j--) {
dp[j]=max(dp[j], dp[j-bank[i].m]*(-bank[i].p));
}
}
for (int i=total; i>=; i--) {
if(-dp[i]<p){//dp[i]是逃脱的概率,1-dp[i]是被抓的概率
printf("%d\n",i);
break;
}
}
}
return ;
}

HDU 2955 Robberies(DP)的更多相关文章

  1. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  2. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  3. hdu 2955 Robberies 背包DP

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. HDU 2955 Robberies(概率DP,01背包)题解

    题意:给出规定的最高被抓概率m,银行数量n,然后给出每个银行被抓概率和钱,问你不超过m最多能拿多少钱 思路:一道好像能直接01背包的题,但是有些不同.按照以往的逻辑,dp[i]都是代表i代价能拿的最高 ...

  5. hdu 2955 Robberies(背包DP)

    题意: 小偷去抢银行,他母亲很担心. 他母亲希望他被抓的概率真不超过P.小偷打算去抢N个银行,每个银行有两个值Mi.Pi,Mi:抢第i个银行所获得的财产 Pi:抢第i个银行被抓的概率 求最多能抢得多少 ...

  6. [HDU 2955]Robberies (动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意是给你一个概率P,和N个银行 现在要去偷钱,在每个银行可以偷到m块钱,但是有p的概率被抓 问 ...

  7. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  8. HDU 2955 Robberies(0-1背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:一个抢劫犯要去抢劫银行,给出了几家银行的资金和被抓概率,要求在被抓概率不大于给出的被抓概率的情况下, ...

  9. Hdu 2955 Robberies 0/1背包

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. C/C++遍历目录下的所有文件(Windows/Linux篇,超详细)

    本文可转载,转载请注明出处:http://www.cnblogs.com/collectionne/p/6815924.html. 前面的一篇文章我们讲了用Windows API遍历一个目录下的所有文 ...

  2. Java IO流之打印流与标准流

    一.打印流 1.1打印流特点与构造方法 1)PrintStream和PrintWriter类都提供了一系列重载的print和println方法来输出各种类型的数据. 2)PrintStream和Pri ...

  3. 关于combotree的用法总结

    后台: 实体树 public class TreeNode{ private String id; private String text; private String level; private ...

  4. 在ie下,a标签包被img的时候,为什么有个蓝色的边线

    效果像下图这样 那是由于<img>在ie下有默认边框,只要清除边框就可以了,在style中定义 img{ border:none } 显示效果就变成下面这样了 完!

  5. Leetcode 494 Target Sum 动态规划 背包+滚动数据

    这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...

  6. ssh隧道

    最近有需求使用ssh隧道,顺便研究了下,以下记录一下大概说明 ssh隧道顾名思义在可以通过ssh连接的server之间建立加密隧道,常用于突破网络限制 常用三种端口转发模式:本地端口转发,远程端口转发 ...

  7. .NET中使用Redis总结

    注:关于如何在windows,linux下配置redis,详见这篇文章:) 启动遇到问题 使用命令[redis-server.exe redis.windows.conf],启动redis 服务[如果 ...

  8. mysql数据导入方法

      1. 通过mysql-workbench的Data Import/Restore功能    1) 有的命令不支持,比如LOAD DATA LOCAL INFILE    2) 好处是可以和DB的模 ...

  9. UWP的Converter妙用

    MVVM模式的使用,简化了UWP应用的开发,使层次更加分明.在写xaml的时候,有些小技术还是很实用的:比如Converter,字面上理解是转换器,那它到底是转换什么的?接触过的可能知道它起的是类型转 ...

  10. 常用DOM API

    Node Node是一个接口,中文叫节点,很多类型的DOM元素都是继承于它,都共享着相同的基本属性和方法.常见的Node有 element,text,attribute,comment,documen ...