题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=2955

题目:

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 
Input
 
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
 
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 
Sample Input
 
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
 
2
4
6
 
题意:
给定一个概率,被抓的概率要小于它。然后给出若干个银行的金额和抢劫被抓的概率。求在满足被抓概率小于所给概率的情况下,能获得的最大金额数。
 
思路:
概率dp题。被抓的情况有很多种,不好一个个去算,所以我们换个角度来计算,即P(被抓)=1-P(逃脱),最后用1-P(逃脱)< P(给定的)来判定。这道题显然是将金额当做背包容量,求得在获得金额相同时,逃脱的概率最大。
状态转移:dp[j]=max(dp[j], dp[j-bank[i].m]*(1-bank[i].p));我们让dp[0]=1,则第一次抢劫一个银行时,则逃脱的概率就等于1-P(被抓)。
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
double dp[];
double p;
struct node{
int m;
double p;
}bank[];
int main(){
int t;
scanf("%d",&t);
while (t--) {
int total=;
memset(dp, , sizeof(dp));
scanf("%lf%d",&p,&n);
for (int i=; i<n; i++){
scanf("%d%lf",&bank[i].m,&bank[i].p);
total+=bank[i].m;//算出不计概率的情况下,金额总数
}
dp[]=;
for (int i=; i<n; i++) {
for (int j=total; j>=bank[i].m; j--) {
dp[j]=max(dp[j], dp[j-bank[i].m]*(-bank[i].p));
}
}
for (int i=total; i>=; i--) {
if(-dp[i]<p){//dp[i]是逃脱的概率,1-dp[i]是被抓的概率
printf("%d\n",i);
break;
}
}
}
return ;
}

HDU 2955 Robberies(DP)的更多相关文章

  1. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  2. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  3. hdu 2955 Robberies 背包DP

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. HDU 2955 Robberies(概率DP,01背包)题解

    题意:给出规定的最高被抓概率m,银行数量n,然后给出每个银行被抓概率和钱,问你不超过m最多能拿多少钱 思路:一道好像能直接01背包的题,但是有些不同.按照以往的逻辑,dp[i]都是代表i代价能拿的最高 ...

  5. hdu 2955 Robberies(背包DP)

    题意: 小偷去抢银行,他母亲很担心. 他母亲希望他被抓的概率真不超过P.小偷打算去抢N个银行,每个银行有两个值Mi.Pi,Mi:抢第i个银行所获得的财产 Pi:抢第i个银行被抓的概率 求最多能抢得多少 ...

  6. [HDU 2955]Robberies (动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意是给你一个概率P,和N个银行 现在要去偷钱,在每个银行可以偷到m块钱,但是有p的概率被抓 问 ...

  7. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  8. HDU 2955 Robberies(0-1背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:一个抢劫犯要去抢劫银行,给出了几家银行的资金和被抓概率,要求在被抓概率不大于给出的被抓概率的情况下, ...

  9. Hdu 2955 Robberies 0/1背包

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. 你对SpringMvc是如何理解的?

    SpringMVC工作原理 SpringMvc是基于过滤器对servlet进行了封装的一个框架,我们使用的时候就是在web.xml文件中配置DispatcherServlet类:SpringMvc工作 ...

  2. Maven测试篇

     maven的生命周期: 讲解Maven测试篇之前将首先介绍一下Maven生命周期的相关概念,如果你熟知这部分概念可以略过此小节内容. 大多数时候,我们在构建一个项目时,不外乎是对其进行清理.编译.测 ...

  3. 翻译Algorithms Unlocked

    写在前面 本书是由<算法导论>(Introduction to Algorithms)的作者之一Thomas H. Cormen编写的适合对算法感兴趣但自身基础又不好的同学阅读.很多人评价 ...

  4. 543. Diameter of Binary Tree

    https://leetcode.com/problems/diameter-of-binary-tree/#/description Given a binary tree, you need to ...

  5. Linux(Debian、Ubuntu、Deepin等)安装最新版Chrome Unstable

    将下载源加入到系统的源列表 sudo wget https://repo.fdzh.org/chrome/google-chrome.list -P /etc/apt/sources.list.d/ ...

  6. 如何实现windows命令提示符的tab补全

    1:使用win+r打开 运行 控制台 2:输入 regedit 打开注册表 3:进入HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Command Processor\Co ...

  7. (转) Unicode(UTF-8, UTF-16)令人混淆的概念

    原文地址:http://www.cnblogs.com/kingcat/archive/2012/10/16/2726334.html 为啥需要Unicode 我们知道计算机其实挺笨的,它只认识010 ...

  8. python 数据类型 -- set

    0. set : 无序的,不重复的序列. 1. 创建 set s = set() s = set(list) # list 为可迭代对象的即可 s = {1,23,4} 2. 内建方法 1) 一般方法 ...

  9. chrome谷歌浏览器-DevTool开发者工具-详细总结

    目录: 一.概述 1.官方文档 2.打开方法: 3.前言: 二.九个模块: 1.设备模式Device Mode 2.元素面板Elements 3.控制台面板Console 4.源代码面板Sources ...

  10. NoSQL数据库:Redis适用场景及产品定位

    传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量 ...