Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000
 
 
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。 
 
题解
先膜一波XYZ大神
这道题首先我们要想好状态数组含义
由于这是个抽卡游戏,每抽到一张卡其他卡的概率都会改变
所以我们要消除这种不方便,故设f[i][j]表示前i张卡在游戏中剩下j轮被选择的概率
对于第i-1张卡,考虑它对前i张的贡献:要么在剩下j轮都没被打出,要么它一定在某一轮中放了技能
所以这张卡对前i张卡的影响是
j轮都没打出:f[i][j]+=f[i-1][j]*pow(1-p[i-1],j)
某一轮打出了:f[i][j-1]+=f[i-1][j]*(1-pow(1-p[i-1],j));
所以f[i][j]的递推公式是:f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));
然后把所有f[i][j]乘上在j轮中某一轮打出的概率(1-pow(1-p[i],j)),再乘伤害d[i]然后累加,得到的就是最后答案
代码见下
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=;
const int R=;
int t,n,r,d[N];
double p[N],k[N],f[N][R];
inline void intn()
{
for(int i=;i<N;i++)p[i]=k[i]=;
memset(d,,sizeof(d));
}
int main()
{
scanf("%d",&t);
while(t--)
{
intn();
scanf("%d%d",&n,&r);
for(int i=;i<=n;i++)
scanf("%lf%d",&p[i],&d[i]);
for(int i=;i<N;i++)
for(int j=;j<R;j++)
f[i][j]=;
double ans=;
f[][r]=;
for(int i=;i<=n;i++)
for(int j=;j<=r;j++)
{
f[i][j]=f[i-][j]*pow(-p[i-],j)+f[i-][j+]*(-pow(-p[i-],j+));
ans+=f[i][j]*(-pow(-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
}

[BZOJ4008]亚瑟王的更多相关文章

  1. 【BZOJ4008】[HNOI2015]亚瑟王 期望

    [BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...

  2. 【bzoj4008 hnoi2015】 亚瑟王

    题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能 ...

  3. 【BZOJ4008】[HNOI2015]亚瑟王(动态规划)

    [BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发 ...

  4. 【BZOJ4008】[HNOI2015]亚瑟王

    [BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ...

  5. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  6. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  7. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  8. 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]

    亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...

  9. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

随机推荐

  1. uoj#73 【WC2015】未来程序

    在 2047 年,第 64 届全国青少年信息学奥林匹克冬令营前夕,B君找到了 2015 年,第 32 届冬令营的题目来练习. 他打开了第三题 “未来程序” 这道题目: 本题是一道提交答案题,一共 10 ...

  2. 前端模块化——seaJS

    1.seaJS手记 一:Bower获取 要安装bower Npm install -g bower Bower install seajs 二:Use方法是整个项目的入口方法,通常一个项目中只调用一次 ...

  3. 573. Squirrel Simulation

    Problem statement: There's a tree, a squirrel, and several nuts. Positions are represented by the ce ...

  4. DIV+CSS 规范命名集合

    一: 命名规范说明: 1).所有的命名最好都小写 2).属性的值一定要用双引号("")括起来,且一定要有值如class="divcss5",id="d ...

  5. Windows下主机名和IP映射设置

    如果需要添加域名和IP的对应关系可以在以下地方进行修改. 打开系统目录:c:/windows/system32/drivers/etc找到hosts文件,打开hosts文件并在最后面添加一条记录 例如 ...

  6. oracle的神奇化学反应(行转列+获取表字段)

    橘子+汽水=橘子汽水,∑(゚Д゚ノ)ノ好无聊!!! 火鸡+烤架=烤火鸡,ლ(´ڡ`ლ)还不错. wm_concat()+表字段查询=(✪ω✪)会是啥呢? wm_concat()函数,该函数可以把列值以 ...

  7. Spring装配bean--01组件扫描和自动装配

    Spring容器负责创建应用程序中的bean并通过DI来协调这些对象之间的关系 Spring提供了三种主要的装配机制: 在XML中进行显式配置 在Java中进行显式配置 隐式的bean发现机制和自动装 ...

  8. Redis学习-String

    命令  描述  复杂的  返回值 SET key value [EX seconds] [PX milliseconds] [NX|XX] 将字符串值value关联到key.如果key已经持有其他值, ...

  9. SSH抛出org.apache.ibatis.exceptions.PersistenceException: 异常

    抛出的异常类容如下 如果遇到这个异常,那么肯定是你在配置事物切面时出错,或者是你的写的事物的方法名称没有和这里的配置对应: 你需要注意如下几点: 1.你的名称必须是以英文开头 2.在你用着事物方法的名 ...

  10. 自己实现so加载器

    在进行安全研究中,我们需要经常使用ida等工具对app的so进行动态调试.这其中遇到的最大问题可能就是app加了反调试.反root等保护手段对应用运行环境进行检测,而这些手段往往是在我们附加进程之前就 ...