PredictionIO+Universal Recommender虽然可以帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然需要一些前提条件。比如说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,否则会需要技术团队花费很长时间来踩坑,试错。

本文列举了一些PredictionIO+Universal Recommender的使用过程中会遇到的Spark平台相关的异常信息,以及其解决思路和最终的解决办法,供参考。

1,执行训练时,发生java.lang.StackOverflowError错误

这个问题比较简单,查看文档,执行训练时,通过参数指定内存大小可以避免该问题,例如:

pio train  -- --driver-memory 8g --executor-memory 8g --verbose

2,执行训练时,发生找不到EmptyRDD方法的错误

Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.emptyRDD(Lscala/reflect/ClassTag;)Lorg/apache/spark/rdd/EmptyRDD;
at com.actionml.URAlgorithm.getRanksRDD(URAlgorithm.scala:)
at com.actionml.URAlgorithm.calcAll(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)
at com.actionml.URAlgorithm.train(URAlgorithm.scala:)

这个是编译和执行环境的Spark版本不一致导致的。

Spark2.1.1 ,查看github上的spark源码发现
这个emptyRDD方法,虽然存在
/** Get an RDD that has no partitions or elements. */def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
返回值类型和老版本相比,却发生了变化,不是EmptyRDD。所以在1.4.0下编译通过,2.1.1下执行失败。该方法的不同版本产生了不兼容。
如果采用我上一篇备忘录中所记述的方式修改过build.sbt,是可以避免这个问题的。
 
 
3,yarn和spark使用的jersey版本不一致的问题
[INFO] [ServerConnector] Started ServerConnector@bd93bc3{HTTP/1.1}{0.0.0.0:}
[INFO] [Server] Started @6428ms
Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/jersey/api/client/config/ClientConfig
at org.apache.hadoop.yarn.client.api.TimelineClient.createTimelineClient(TimelineClient.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.createTimelineClient(YarnClientImpl.java:)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:)
at org.apache.hadoop.service.AbstractService.init(AbstractService.java:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.sun.jersey.api.client.config.ClientConfig
at java.net.URLClassLoader.findClass(URLClassLoader.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
... more
修改方法:engine.json中的sparkConf中设置
"spark.hadoop.yarn.timeline-service.enabled": "false",
 
更深入了解此问题,参考:https://markobigdata.com/2016/08/01/apache-spark-2-0-0-installation-and-configuration/
 
 
4,yarn的空参数处理BUG
[INFO] [ContextHandler] Stopped o.s.j.s.ServletContextHandler@7772d266{/jobs,null,UNAVAILABLE}
[WARN] [YarnSchedulerBackend$YarnSchedulerEndpoint] Attempted to request executors before the AM has registered!
[WARN] [MetricsSystem] Stopping a MetricsSystem that is not running
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$.apply(YarnSparkHadoopUtil.scala:)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:)
at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.setEnvFromInputString(YarnSparkHadoopUtil.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$.apply(Client.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.deploy.yarn.Client.setupLaunchEnv(Client.scala:)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:)
at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:)
at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:)
at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
是yarn的一个bug,无法正常处理空参数
 
解决方式:修改spark-env.sh,强制设置一个假参数,可以绕过这个问题
修改 spark/conf/spark-env.sh,增加下面这句话
export SPARK_YARN_USER_ENV="HADOOP_CONF_DIR=/home/hadoop/apache-hadoop/etc/hadoop"
5,yarn的软连接BUG
[WARN] [TaskSetManager] Lost task 3.0 in stage 173.0 (TID , bigdata01, executor ): java.lang.Error: Multiple ES-Hadoop versions detected in the classpath; please use only one
jar:file:/home/hadoop/apache-hadoop/hadoop/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar
jar:file:/home/hadoop/apache-hadoop/hadoop-2.7./var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.-deps.jar at org.elasticsearch.hadoop.util.Version.<clinit>(Version.java:)
at org.elasticsearch.hadoop.rest.RestService.createWriter(RestService.java:)
at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$.apply(EsSpark.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

这不知道算不算一个BUG,总之,yarn的配置中如果使用了软连接来指定hadoop文件夹的路径,将有可能发生此问题。参考 https://interset.zendesk.com/hc/en-us/articles/230751687-PhoenixToElasticSearchJob-Fails-with-Multiple-ES-Hadoop-versions-detected-in-the-classpath-

解决方式也很简单,nodemanager修改所有采用Hadoop文件夹的软连接的配置,改为真正的路径即可。

6,Spark的JOB执行出错

[WARN] [Utils] Service 'sparkDriver' could not bind on port . Attempting port .
[ERROR] [SparkContext] Error initializing SparkContext.
Exception in thread "main" java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after retries (starting from )! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
at sun.nio.ch.Net.bind0(Native Method)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.Net.bind(Net.java:)
at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:)
at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:)
at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:)
at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:)
at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:)
at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:)
at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:)
at io.netty.bootstrap.AbstractBootstrap$.run(AbstractBootstrap.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor$.run(SingleThreadEventExecutor.java:)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:)
at java.lang.Thread.run(Thread.java:)
这个错误,网上的有很多文章让修改spark-env.sh ,增加 export SPARK_LOCAL_IP="127.0.0.1"
但这些网文其实只适用于单机SPARK的情况。这个IP是SPARK回调本机的地址,所以应该设置为本机的IP地址(用ifconfig查看本机真实IP)
 

PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)的更多相关文章

  1. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)

    1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...

  2. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(1)

    1,PredictionIO如果用直接下载的0.11.0-incubating版本,存在一个HDFS配置相关的BUG 执行pio status命令时会发生如下的错误: -- ::, ERROR org ...

  3. SNF快速开发平台--规则引擎整体介绍及使用说明书

    一.设计目标 a)规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b)能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c)运算速度快 ...

  4. SNF快速开发平台--规则引擎在程序当中如何调用

    规则定义完如何在程序当中进行使用呢? 其时很简单,只需要如下代码就可以调用程序: 规则定义: 调用代码: #region 演示2:生成左表数据(规则) POST: /api/DEMO/DemoSing ...

  5. SNF快速开发平台--规则引擎介绍和使用文档

    设计目标: a) 规则引擎语法能够满足分单,计费,WMS策略的配置要求.语法是一致和统一的 b) 能够在不修改规则引擎模块的情况下,加入任意一个新的规则:实现上述需求之外的规则配置需求 c) 运算速度 ...

  6. Atitit 快速开发的推荐技术标准化 规范 大原则

    Atitit 快速开发的推荐技术标准化 规范 大原则 1. 如何评估什么样的技术适合快速开发??1 1.1. (重要)判断语言层次..层次越高开发效率越高  4gl  dsl> 3.5gl &g ...

  7. 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...

  8. 4款java快速开发平台推荐

    JBoss Seam JBoss Seam,算得上是Java开源框架里面最优秀的快速开发框架之一. Seam框架非常出色,尤其是他的组件机制设计的很有匠心,真不愧是Gavin King精心打造的框架了 ...

  9. UWP简单示例(三):快速开发2D游戏引擎

    准备 IDE:VisualStudio 2015 Language:VB.NET/C# 图形API:Win2D MSDN教程:UWP游戏开发 游戏开发涉及哪些技术? 游戏开发是一门复杂的艺术,编码方面 ...

随机推荐

  1. SaltStack 安装介绍 01

    一.入门指南 1.1 SALTSTACK是什么? The backbone of Salt is the remote execution engine, which creates a high-s ...

  2. JavaScript各种继承方式和优缺点

    好久没写博客啦,嘻嘻,这个月是2017年的最后一个月啦,大家应该都开始忙着写年终总结了吧,嘻嘻,小颖今天给大家分享下Javascript中的几种继承方式以及他们的优缺点. 1.借助构造函数实现继承 原 ...

  3. thinkphp中各字母代表的发放和具体实例

    hinkphp单字母函数使用指南A方法 A方法用于在内部实例化控制器,调用格式:A('[项目://][分组/]模块','控制器层名称') 最简单的用法: $User = A('User'); 复制代码 ...

  4. mysql 有哪些索引

    Mysql支持哪几种索引 从数据结构角度 1.B+树索引(O(log(n))):关于B+树索引,可以参考 MySQL索引背后的数据结构及算法原理 2.hash索引:a 仅仅能满足"=&quo ...

  5. 如何扩展或者添加硬盘给VMware的Linux操作系统

    我们在使用Linux系统一段时间以后,可能添加的东西原来越多导致原来开辟的硬盘不够,当硬盘剩余空间过小时Ubuntu系统也会给出提示或者可以通过df  -hl命令查看你硬盘使用情况如下图所示:我已经用 ...

  6. C#、Java中的一些小功能点总结(持续更新......)

    前言:在项目中,有时候一些小的功能点,总是容易让人忽略,但是这些功能加在项目中往往十分的有用,因此笔者在这里总结项目中遇到的一些实用的小功能点,以备用,并持续更新...... 1.禁用DataGrid ...

  7. Windows 服务多语言化时读取配置文件失败的问题。

    在Installer中,按一般读取配置文件的方法(ConfigurationManager.AppSettings["CultureName"])读取不到内容. 可以这样读取: v ...

  8. SharePoint Online Add-in 开发简介

    作者:陈希章 发表于 2017年12月22日 在 再谈SharePoint大局观 中我提到了SharePoint开发的一些新的变化,这一篇文章我将讲解SharePoint Add-in开发.其实早在2 ...

  9. loadrunner录制脚本(一) ----录制脚本打不开浏览器

    loadrunner安装参考百度上的,或者有已经准备好的安装文档. 安装好了之后,用 HP Virtual Generator 录制脚本. 在上述操作中,需要选择火狐浏览器的exe文件驱动.也可以选择 ...

  10. Python - 首字母大写(capwords) 和 创建转换表(maketrans) 具体解释

    首字母大写(capwords) 和 创建转换表(maketrans) 具体解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/27 ...