本文参考和综合了多篇网络博客文章,加以自己的实践,最终终于在windows环境下,编译出可以用于C++程序调用tensorflow API的程序,并执行成功。

考虑到网络上关于这方面的资料还较少,特总结全过程如下,希望能帮助到有需要的码农朋友,文中有部分文字步骤是借鉴他人文章,引用路径在最后列出。

一、环境准备:

  1. 操作系统:windows8.1
  2. 安装visual stduio2015
  3. 安装Swigwin-3.0.12,注意其下载解压以后即可使用,本人放置路径在D:/lib/swigwin-3.0.12,可执行文件地址为 D:/swigwin-3.0.12/swig.exe
  4. 安装python3.5,安装时注意选择将路径添加到环境变量。
  5. 安装CMake-3.8.0 ,安装时注意选择将路径添加到环境变量。
  6. 安装Git,用于在编译过程中从GitHub上下载依赖项。
  7. 将GitHub上TensorFlow的master分支 下载并解压到文件夹D:\tf中,编辑文件tensorflow/tensorflow/contrib/cmake/CMakeLists.txt,将第87行至93行修改如下:
 if (tensorflow_OPTIMIZE_FOR_NATIVE_ARCH)
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("-march=native" COMPILER_OPT_ARCH_NATIVE_SUPPORTED)
if (COMPILER_OPT_ARCH_NATIVE_SUPPORTED)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native")
else()
CHECK_CXX_COMPILER_FLAG("/arch:AVX" COMPILER_OPT_ARCH_AVX_SUPPORTED)
if(COMPILER_OPT_ARCH_AVX_SUPPORTED)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
endif()
endif()
endif()

二、使用CMAKE设置各项编译参数

  1. 打开下载tensorflow源文件的根目录,本文路径是E:TF Code/TensorFlow,在路径下进入../tensorflow\contrib\cmake, 新建文件夹\build。
  2. 打开已安装的CMAKE-GUI工具,进行各项编译选项的配置,本文配置界面如下:
  3. 点击configue,下方提示Configuring done后,点击Generate,等待Generating done后完成编译设置。如果中间有报错,请检测各路径设置是否正确。

三、编译生成tensorflow库文件

  1. 打开visual studio2015,打开E:\TF Code\tensorflow\tensorflow\contrib\cmake\build下的ALL_BUILD项目。我们在此只以release版本为例,所以检查编译平台是
  2. 点击生成解决方案,编译的时间很长,我的笔记本电脑编译一次大概3到4个小时,编译到最后一般都会报错
    fatal error C1060: compiler is out of heap space 没关系,等待整个工程全部编译完成(据说内存特别大的电脑不会报)。
  3. 找到tf_core_kernels项目,右键单独编译,操作如下图。

   

  4. tf_core_kernels项目编译成功后,再同样对tensorflow_static作单独编译,最后再对tensorflow作单独编译。.

   这样tensorflow.lib和tensorflow.dll文件就可以编译出来了,生成的库文件路径在..\tensorflow\tensorflow\contrib\cmake\build\Release下。

四、使用tensorflow库文件编写C++程序

  1. 在vs2015中创建一个新的Win32控制台工程TestTensorFlow,注意也必须把编译平台设置成
  2. 新建一个TestTensorFlow.h,在其中输入
    #pragma once
    
    #define COMPILER_MSVC
    #define NOMINMAX  
  3. 对应的TestTensorFlow.CPP文件中输入如下:
    // TestTensorFlow.cpp : 定义控制台应用程序的入口点。
    //
    #include "stdafx.h" #include <vector>
    #include <eigen/Dense> #include "TestTensorFlow.h"
    #include "tensorflow/core/public/session.h"
    #include "tensorflow/cc/ops/standard_ops.h"
    using namespace tensorflow; GraphDef CreateGraphDef()
    {
    Scope root = Scope::NewRootScope(); auto X = ops::Placeholder(root.WithOpName("x"), DT_FLOAT,
    ops::Placeholder::Shape({ -1, 2 }));
    auto A = ops::Const(root, { { 3.f, 2.f },{ -1.f, 0.f } }); auto Y = ops::MatMul(root.WithOpName("y"), A, X,
    ops::MatMul::TransposeB(true)); GraphDef def;
    TF_CHECK_OK(root.ToGraphDef(&def)); return def;
    } int main()
    {
    GraphDef graph_def = CreateGraphDef(); // Start up the session
    SessionOptions options;
    std::unique_ptr<Session> session(NewSession(options));
    TF_CHECK_OK(session->Create(graph_def)); // Define some data. This needs to be converted to an Eigen Tensor to be
    // fed into the placeholder. Note that this will be broken up into two
    // separate vectors of length 2: [1, 2] and [3, 4], which will separately
    // be multiplied by the matrix.
    std::vector<float> data = { 1, 2, 3, 4 };
    auto mapped_X_ = Eigen::TensorMap<Eigen::Tensor<float, 2, Eigen::RowMajor>>
    (&data[0], 2, 2);
    auto eigen_X_ = Eigen::Tensor<float, 2, Eigen::RowMajor>(mapped_X_); Tensor X_(DT_FLOAT, TensorShape({ 2, 2 }));
    X_.tensor<float, 2>() = eigen_X_; std::vector<Tensor> outputs;
    TF_CHECK_OK(session->Run({ { "x", X_ } }, { "y" }, {}, &outputs)); // Get the result and print it out
    Tensor Y_ = outputs[0];
    std::cout << Y_.tensor<float, 2>() << std::endl; session->Close();
    getchar();
    } 
  4.  设置要包含的tensorflow头文件路径,右键项目属性——C/C++——附加包含目录
    E:\TF Code\tensorflow\tensorflow\contrib\cmake\build\Debug
    E:\TF Code\tensorflow\tensorflow\contrib\cmake\build\external\nsync\public
    E:\TF Code\tensorflow\tensorflow\contrib\cmake\build\protobuf\src\protobuf\src
    E:\TF Code\tensorflow\tensorflow\contrib\cmake\build\external\eigen_archive
    E:\TF Code\tensorflow\tensorflow\contrib\cmake\build
    E:\TF Code\tensorflow
    E:\TF Code\tensorflow\third_party\eigen3
  5. 引入tensorflow.lib文件,右键项目——添加——现有项,找到..\tensorflow\tensorflow\contrib\cmake\build\Release下的tensorflow.lib

  5.  设置预编译选项,右键属性——C/C++——预处理器,预处理器定义中加入PLATFORM_WINDOWS

  6. 编译TestTensorFlow项目,就可以成功生成TestTensorFlow.exe了。

  7.直接运行程序,会报错

  8,把..\tensorflow\tensorflow\contrib\cmake\build\Release下的tensorflow.dll拷贝到TestTensorFlow.exe同文件夹下,再运行即可成功得到输出结果如下:

输出结果有一句警告,好像是我编译参数还是跟CPU功能有不匹配,但是不影响执行结果,有知道如何解决的朋友可以留言给我,谢谢。

参考:

  1. https://www.cnblogs.com/jliangqiu2016/p/7642471.html
  2. http://www.qingpingshan.com/m/view.php?aid=322808

windows环境VS2015编译TensorFlow C++程序完全攻略的更多相关文章

  1. windows环境下Eclipse开发MapReduce程序遇到的四个问题及解决办法

    按此文章<Hadoop集群(第7期)_Eclipse开发环境设置>进行MapReduce开发环境搭建的过程中遇到一些问题,饶了一些弯路,解决办法记录在此: 文档目的: 记录windows环 ...

  2. 基于DCMTK的DICOM相关程序编写攻略

    2008年09月10日 星期三 15:35 基于DCMTK的DICOM相关程序编写攻略 前言: 由于现在的医学影像设备的图像存储和传输正在逐渐向DICOM标准靠拢,在我们进行医学图像处理的过程中,经常 ...

  3. Windows下 VS2015编译levelDB(nmake)

    VS2015编译levelDB Leveldb是一个google实现的非常高效的kv数据库,非常适合嵌入到程序中.如果有简单的key-value数据库需求,而又想使用一个数据库服务的话,levelDB ...

  4. Windows用cmd编译运行C程序

    在Windows环境下用命令行编译运行程序 浙江大学-C语言程序设计进阶 配置gcc 准备一个Dev-cpp 找到gcc.exe所在目录 Dev-Cpp\MinGW64\bin 地址栏右键将地址复制为 ...

  5. 在Windows 环境下编译Qt静态库(QT5.32)

    参考链接 Qt5.3 Tools and Versions MinGW ICU ActivePerl Qt 安装MinGW工具链环境 这里在Win32环境下要安装一个MinGW工具链,这里最好是先安装 ...

  6. Openstack 二次开发之:在windows 环境下编译Openstack-java-sdk

    在windows环境下使用maven对openstack-java-sdk进行编译 编译源文件 下载源代码 git clonehttps://github.com/woorea/openstack-j ...

  7. Windows下 VS2015编译RocksDB

    VS2015编译RocksDB RocksDB 是一个来自 facebook 的可嵌入式的支持持久化的 key-value 存储系统,也可作为 C/S 模式下的存储数据库,但主要目的还是嵌入式.Roc ...

  8. Windows下 VS2015编译boost1.62

    VS2015编译boost1.62 Boost库是一个可移植.提供源代码的C++库,作为标准库的后备,是C++标准化进程的开发引擎之一. Boost库由C++标准委员会库工作组成员发起,其中有些内容有 ...

  9. 在linux环境下编译运行OpenCV程序的两种方法

    原来以为在Ubuntu下安装好了OpenCV之后,自己写个简单的程序应该很容易吧,但是呢,就是为了编译一个简单的显示图片的程序我都快被弄崩溃了. 在谷歌和上StackOverFlow查看相关问题解答之 ...

随机推荐

  1. Java基础—标识符及命名规范

      什么是标识符符? 凡是可以由自己命名的地方都称为修饰符. 例: 项目名 ,包名 ,类名 .方法名 2.   命名规范. ①    不可使用java关键字和保留字,但是可以包含关键字和保留字. ②  ...

  2. String内存溢出异常(错误)可能的原因及解决方式

    摘要:本Blog主要为了阐述java.lang.OutOfMemoryError:PermGenspace可能产生的原因及解决方式. 当中PermGen space是Permanent Generat ...

  3. Scheme -- Hierarchical Structures

    Question: produce a deep-reverse procedure that takes a list as argument  and returns as its value t ...

  4. 《Pro Android Graphics》读书笔记之第六节

    Android UI Layouts: Graphics Design Using the ViewGroup Class Android ViewGroup Superclass: A Founda ...

  5. Python笔记·第四章—— 细数Python中的数据类型以及他们的方法

    一.数据类型的种类及主要功能 1.数字类型 数字类型主要是用来计算,它分为整数类型int和浮点类型float 2.布尔类型 布尔类型主要是用于判断,它分为真True和False两种 3.字符串类型 字 ...

  6. iOS 实现后台 播放音乐声音 AVAudioPlayer 以及铃声设置(循环播放震动)

    1.步骤一:在Info.plist中,添加"Required background modes"键,value为:App plays audio 或者: 步骤二: - (BOOL) ...

  7. iOS 获取当前应用的信息以及用户信息:版本号手机号手机型号

    NSDictionary *infoDictionary = [[NSBundle mainBundle] infoDictionary]; CFShow(infoDictionary); // ap ...

  8. NOIP2017day1游记

    NOIP 2017总结 Day1 Day1T1 第一眼看到瞬间慌掉,woc这玩意啥! 然后懵逼了两分钟 好的 我相信他是NOIP第一题 那我就打个表吧 然后花五分钟打了个暴力 玩了几组数据 哇!好像有 ...

  9. go defer (go延迟函数)

    go defer (go延迟函数) Go语言的defer算是一个语言的新特性,至少对比当今主流编程语言如此.根据GO LANGUAGE SPEC的说法: A "defer" sta ...

  10. DeepLearning.ai学习笔记(三)结构化机器学习项目--week1 机器学习策略

    一.为什么是ML策略 如上图示,假如我们在构建一个喵咪分类器,数据集就是上面几个图,训练之后准确率达到90%.虽然看起来挺高的,但是这显然并不具一般性,因为数据集太少了.那么此时可以想到的ML策略有哪 ...