LDA工程实践之算法篇之(一)算法实现正确性验证(转)
研究生二年级实习(2010年5月)开始,一直跟着王益(yiwang)和靳志辉(rickjin)学习LDA,包括对算法的理解、并行化和应用等等。毕业后进入了腾讯公司,也一直在从事相关工作,后边还在yiwang带领下,与孙振龙、严浩等一起实现了一套大规模并行的LDA训练系统——Peacock。受rick影响,决定把自己对LDA工程实践方面的一些理解整理出来,分享给大家,其中可能有一些疏漏和错误,还请批评指正。
Rickjin在《LDA数学八卦》[1]一文中已经对LDA的数学模型以及基本算法介绍得比较充分了,但是在工程实践上,我们还是有一些需要注意的问题,比如:
- 怎样验证算法实现的正确性?
- 怎样加速Gibbs sampling?
- 在线推断(inference)时,需要注意些什么问题?
- 超参数对模型的影响以及怎样做超参数优化?
本文将涉及以上内容,不包括:LDA并行化和应用,后续会在文章《LDA工程实践之架构篇》和《LDA工程实践之应用篇》中进行介绍。
为了方便大家理解,本文所有数学符号和 [2] 保持一致,具体见表 1。
Table 1: Symbols
1 算法实现正确性验证
在实现机器学习算法的时候,由于数值算法特有的收敛性问题,让这项本来相对简单的工作增加了难度。这其中的典型是多层次神经网络的优化算法——反向传播(Back Propagation,BP)算法,由于神经网络的强大表述能力,即使实现有误,在简单数据实验上,我们可能也发现不了问题。LDA算法的实现较BP简单,工作中我们常采用如下几个方法进行算法正确性的先期验证。
1.1 Toy data实验
Figure 1: KMeans toy data
在实现算法之前,toy data的准备必不可少。Toy data需要尽量简单——纬度低、数据量少,能表述清楚问题即可,这样方便我们实现算法时进行单元测试和调试。比如做KMeans聚类,可以采用2D高斯混合模型生成toy data(见图1,类别数为3)。LDA实现过程中,我们构造的toy data类似表 2(假设模型主题数 K=2),此时模型训练过程中的每一个迭代以及最终模型输出都是可预测的(表 2 数据收敛后,Doc1-3的词赋予的主题应该都是1,Doc4-6的词赋予的主题应该都是2,或者二者主题互换)。
Table 1: LDA toy data
随机算法在开发调试过程中,稳定不变的随机数序列是非常重要的,这样有利于定位问题。获取稳定不变的随机数非常简单,只需要我们额外提供一个伪随机数种子的命令行参数。
1.2 合成实验
算法包最终实现,toy data实验符合预期,此时如果我们想进一步验证LDA算法的效果呢?考虑到LDA是一种生成模型[3],Griffiths等人[4]在论文中采用合成实验来演示模型的效果,当然,这也可以作为算法正确性的验证。
Figure 2: Griffiths Ground truth
Figure 3: Griffiths Synthesis Experiment [4]
Figure 4: Ground truth
Figure 5: Estimated
合成实验过程中需要用到Dirichlet采样,一般的标准库中没有提供:对c/c++来说,gsl [5] 是不错的选择;对python来说,numpy [6] 有提供实现。
具体到LDA模型,Perplexity计算公式如Eq. 6。训练过程中,计算Perplexity严谨的做法应该使用当前迭代获得的模型在线Inference测试集文档,得到文档的的主题分布后代入Eq. 6,在第三章我们将看到,在线Inference新文档的主题分布也满足
Eq. 3。当然,工程上为了节省计算资源,我们通常就在训练集上计算当前迭代的Perplexity。
LDA模型训练过程中,随着迭代的进行,模型的Perplexity曲线会逐渐收敛。因此,我们通常会根据训练过程中模型的Perplexity曲线是否收敛来判定模型是否收敛。Perplexity曲线收敛性也从侧面可以证明算法实现的正确性。图 6 给出了一次模型训练过程的LogLikelihood和Perplexity曲线(主题数 K=10,000,迭代130左右的曲线突变将在第四章给出解释)。
Figure 6: LogLikelihood and perplexity curve
参考文献
- [1] 靳志辉. LDA数学八卦. http://cos.name/2013/03/lda-math-lda-text-modeling.
- [2] Gregor Heinrich. Parameter estimation for text analysis. Technical Report, 2009.
- [3] Generative model. http://en.wikipedia.org/wiki/Generative_model.
- [4] Thomas L. Griffiths, and Mark Steyvers. Finding scientific topics. In PNAS ’2004.
- [5] http://www.gnu.org/software/gsl/ … -Distribution.html.
- [6] http://docs.scipy.org/doc/numpy/ … dom.dirichlet.html.
- [7] Perplexity. http://en.wikipedia.org/wiki/Perplexity.
- [8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. In JMLR ’2003.
LDA工程实践之算法篇之(一)算法实现正确性验证(转)的更多相关文章
- 【算法篇】Bitmap 算法
首先,什么是Bitmap算法(位图算法)呢? 一:定义: Bit map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.使用Bit为用来存储数据的单位, 可以大大节省存储空间. ...
- panguan(判官):一个自研的任务执行引擎的工程实践
来某厂接近半年了,几乎没写过C++代码,说实话还真的有点手生.最近刚好有一个需求,然而我感觉我也没有办法用C++以外的语言去实现它.于是还是花了几天时间用C++完成编码,这是一个简单的任务执行引擎,它 ...
- webpack 从入门到工程实践
from:https://www.jianshu.com/p/9349c30a6b3e?utm_campaign=maleskine&utm_content=note&utm_medi ...
- 深度学习word2vec笔记之算法篇
深度学习word2vec笔记之算法篇 声明: 本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料 ...
- 我的TDD实践---SVN架设篇
我的TDD实践---SVN架设篇 “我的TDD实践”系列之SVN架设 写在前面: 我的TDD实践这几篇文章主要是围绕测试驱动开发所展开的,其中涵盖了一小部分测试理论,更多的则是关注工具的使用及环境的搭 ...
- 实现求解线性方程(矩阵、高斯消去法)------c++程序设计原理与实践(进阶篇)
步骤: 其中A是一个n*n的系数方阵 向量x和b分别是未知数和常量向量: 这个系统可能有0个.1个或者无穷多个解,这取决于系数矩阵A和向量b.求解线性系统的方法有很多,这里使用一种经典的方法——高斯消 ...
- 编码原则实例------c++程序设计原理与实践(进阶篇)
编码原则: 一般原则 预处理原则 命名和布局原则 类原则 函数和表达式原则 硬实时原则 关键系统原则 (硬实时原则.关键系统原则仅用于硬实时和关键系统程序设计) (严格原则都用一个大写字母R及其编号标 ...
- Spring实践系列-入门篇(一)
本文主要介绍了在本地搭建并运行一个Spring应用,演示了Spring依赖注入的特性 1 环境搭建 1.1 Maven依赖 目前只用到依赖注入的功能,故以下三个包已满足使用. <properti ...
- Appium+python自动化(四十二)-Appium自动化测试框架综合实践- 寿终正寝完结篇(超详解)
1.简介 按照上一篇的计划,今天给小伙伴们分享执行测试用例,生成测试报告,以及自动化平台.今天这篇分享讲解完.Appium自动化测试框架就要告一段落了. 2.执行测试用例&报告生成 测试报告, ...
随机推荐
- C# 三层架构之系统的登录验证与添加数据的实现
利用三层架构体系,实现学生管理系统中用户的登录与添加班级信息的功能,一下代码为具体实现步骤的拆分过程: 一.用户登录界面功能的实现 1.在数据访问层(LoginDAL)进行对数据库中数据的访问操作 u ...
- 程序员也有春天之HTTP/2.0配置
哎呀,一不小心自己的博客也是HTTP/2.0了,前段时间对网站进行了https迁移并上了CDN,最终的结果是这酱紫的(重点小绿锁,安全标示以及HTTP/2.0请求). 科普 随着互联网的快速发展,HT ...
- java中System.getProperty()的作用及使用
Java中给我们提供了System.getProperty()这个函数,这个函数可以获取到JavaJVM以及操作系统的一些参数,可以供程序判断等. System.getProperty()方法中需要传 ...
- JS学习二(循环)
JS中的循环结构 [循环结构的执行步骤] 1.声明循环变量: 2.判断循环条件: 3.执行循环体操作: 4.更新循环变量: 然后,循环执行2~4,知道条件不成立.跳出循环. [while 循环] wh ...
- Python杨辉三角形
RT Show me the Code def triangles(): b = [1] while(True): yield b b = [1] + [b[i] + b[i+1] for i in ...
- OpenCppCoverage 的使用
OpenCppCoverage 的使用 OpenCppCoverage 是一款好用方便的 C++ 代码覆盖率检测工具,可以独立在命令行运行也可以作为 Visual Studio 13/15/17 的插 ...
- 【1414软工助教】团队作业4——第一次项目冲刺(Alpha版本) 得分榜
题目 团队作业4--第一次项目冲刺(Alpha版本) 作业提交情况情况 所有团队都在规定时间内完成了七次冲刺. 往期成绩 个人作业1:四则运算控制台 结对项目1:GUI 个人作业2:案例分析 结对项目 ...
- One.1
Github地址:https://github.com/zyp031502148/zyp1 解题思路: 看到数独这个题目的时候,我就想到了平时自己玩数独之后一开始怎么做的,可是发现那样的话需要先出一个 ...
- 201521123086《java程序设计》第7周
本章学习总结 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 以下是ArrayList的contains源代码: public boolean con ...
- 201521123050《Java程序设计》第3周学习总结
1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...