这题如果按暴力做只有一半分,最大时间复杂度为O(C(16,8)*C(16,8)); 很容易算出超时;

我们可以发现如果直接dp会很难想,但是知道选哪几行去dp就很好写状态转移方程:

dp[i][j]=min(dp[i][j],dp[k][j-1]+a[i]+b[k][i]);

其中dp[i][j]表示 前i列里选j列的子矩阵最大分值

a[i]表示 第i列选到的行的总差值

b[k][i]表示选到的每一行第k列和第i列之间的差值

我们只要枚举 行 然后dp一次,取最小值即可 这样最大时间复杂度就成了O(C(8,16)*n3);

最后附上我弱弱的pascal代码:

 var
i,j,k,n,m,n1,m1,ans:longint;
dp,a,f:array[..,..] of longint;
hc:array[..,..,..] of longint;
b,lc:array[..] of longint;
function min(a,b:longint):longint;
begin
if a>b then min:=b
else min:=a;
end;
procedure ddp;
var
i,j,k,max:longint;
begin
fillchar(f,sizeof(f),);
fillchar(lc,sizeof(lc),);
fillchar(dp,sizeof(dp),);
for i:= to m do
for j:= to n1- do
lc[i]:=lc[i]+abs(a[b[j+],i]-a[b[j],i]);
for i:= to m do
for j:=i+ to m do
for k:= to n1 do
f[i,j]:=f[i,j]+hc[b[k],i,j];
for i:= to m do
dp[i,]:=lc[i];
for i:= to m do
for j:= to m1 do
if i>=j then
begin
dp[i,j]:=maxlongint;
for k:=j- to i- do
dp[i,j]:=min(dp[i,j],dp[k,j-]+lc[i]+f[k,i]);
end;
for i:=m1 to m do
if dp[i,m1]<ans then ans:=dp[i,m1];
end;
procedure jw(ii:longint);
begin
inc(b[ii]);
if ii>= then
if b[ii]>(n-n1+ii) then
begin
jw(ii-);
b[ii]:=b[ii-]+;
end;
end;
begin
read(n,m,n1,m1);
for i:= to n do
for j:= to m do
begin
read(a[i,j]);
for k:= to j- do
hc[i,k,j]:=abs(a[i,j]-a[i,k]);
end;
for i:= to n1 do
b[i]:=i;
ans:=;
while b[]= do
begin
ddp;
jw(n1);
end;
write(ans);
end.

【NOIP2014】子矩阵的更多相关文章

  1. [NOIP2014]子矩阵

    1812. [NOIP2014]子矩阵 http://www.cogs.pro/cogs/problem/problem.php?pid=1812 ★★★   输入文件:submatrix.in   ...

  2. Luogu 2258 [NOIP2014] 子矩阵

    被普及组虐了,感觉

  3. $NOIp$普及组做题记录

    \([NOIp2014]\) 螺旋矩阵 \(Sol\) 直接模拟,一次走一整行或者一整列.复杂度\(O(n)\). \(Code\) #include<bits/stdc++.h> #de ...

  4. 1768:最大子矩阵(NOIP2014初赛最后一题)

    1768:最大子矩阵 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如 ...

  5. NOIP2014 T4 子矩阵 dfs+dp

    最近在狂补题啊QAQ... 打算先把NOIP的干掉吧... 点我看题 链接还是放洛谷的了... 题意:给一个n*m的矩阵,在这个矩阵里选 r 行 c 列,然后这 r 行 c 列所相交的格子为新矩阵的, ...

  6. [NOIP2014普及组]子矩阵

    题目:洛谷P2258.Vijos P1914.codevs 3904. 题目大意:给你一个矩阵,要你找一个r行c列的子矩阵,求最小分值(子矩阵和分值的定义见原题). 解题思路:n和m比较小,考虑暴力. ...

  7. ACM 中 矩阵数据的预处理 && 求子矩阵元素和问题

            我们考虑一个$N\times M$的矩阵数据,若要对矩阵中的部分数据进行读取,比如求某个$a\times b$的子矩阵的元素和,通常我们可以想到$O(ab)$的遍历那个子矩阵,对它的各 ...

  8. [BZOJ1127][POI2008] KUP子矩阵

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  9. 【SCOI2005】 最大子矩阵 BZOJ 1084

    Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第一行为n,m,k(1≤n≤100,1≤m≤2 ...

随机推荐

  1. maven创建web工程Spring配置文件找不到问题解决方案

    使用maven创建web工程,将Spring配置文件applicationContext.xml放在src/resource下,用eclipse编译时提示class path resource [ap ...

  2. SetConsoleTitle 函数--设置控制台窗口标题

    SetConsoleTitle函数 来源:https://msdn.microsoft.com/en-us/library/windows/desktop/ms686050(v=vs.85).aspx ...

  3. 实例化bean

    从bean.xml中<bean>标签内容可以看出bean其实是一个管理对象的东西,我们只需要修改xml配置文件,就可以改变对象之间的依赖关系,不需要去修改任何源代码.我觉得学习好sprin ...

  4. 简单设置android启动画面

    1.新建Activity,以及layout文件夹里的xml文件2.将新建Activity在AndroidManifest中设为默认Activity,并且添加:android:theme="@ ...

  5. MySQL优化 - 性能分析与查询优化

    优化应贯穿整个产品开发周期中,比如编写复杂SQL时查看执行计划,安装MySQL服务器时尽量合理配置(见过太多完全使用默认配置安装的情况),根据应用负载选择合理的硬件配置等. 1.性能分析 性能分析包含 ...

  6. word2vec原理(三) 基于Negative Sampling的模型

    word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...

  7. HtmlCleaner CleanerProperties 参数配置(转自macken博客,链接:http://macken.iteye.com/blog/1579809)

    HtmlCleaner CleanerProperties 参数配置 Parameter Default Explanation advancedXmlEscape true If this para ...

  8. Open-Falcon第一步环境准备(小米开源互联网企业级监控系统)

    1.环境安装 本文采取rpm安装方式,大家也可以用源码包安装. wget http://download.fedoraproject.org/pub/epel/6/i386/epel-release- ...

  9. NYOJ 23.取石子(一)

    取石子(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子.游 ...

  10. promise处理多个相互依赖的异步请求

    在项目中,经常会遇到多个相互依赖的异步请求.如有a,b,c三个ajax请求,b需要依赖a返回的数据,c又需要a和b请求返回的数据.如果采用请求嵌套请求的方式自然是不可取的.导致代码难以维护,如何请求很 ...