矩阵的f范数及其求偏导法则
http://blog.csdn.net/txwh0820/article/details/46392293
矩阵的迹求导法则
1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix
2. x is a column vector, A is a matrix
d(A∗x)/dx=A
d(xT∗A)/dxT=A
d(xT∗A)/dx=AT
d(xT∗A∗x)/dx=xT(AT+A)
3. Practice:
4. 矩阵求导计算法则
求导公式(撇号为转置):
Y = A * X –> DY/DX = A’
Y = X * A –> DY/DX = A
Y = A’ * X * B –> DY/DX = A * B’
Y = A’ * X’ * B –> DY/DX = B * A’
乘积的导数:
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
一些结论:
- 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)]–> dY/dx = [dy(ji)/dx] - 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) –> dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)’ - 行向量Y’对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX’/dX =I
d(AX)’/dX =A’ - 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX’ =(dY’/dX)’ - 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV’)/dX =(dU/dX)V’ + U(dV’/dX)
d(U’V)/dX =(dU’/dX)V + (dV’/dX)U’
重要结论:
d(X’A)/dX =(dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A
d(AX)/dX’ =(d(X’A’)/dX)’ = (A’)’ = A
d(X’AX)/dX =(dX’/dX)AX + (d(AX)’/dX)X = AX + A’X - 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。 - 矩阵积对列向量求导法则:
d(uV)/dX =(du/dX)V + u(dV/dX)
d(UV)/dX =(dU/dX)V + U(dV/dX)
重要结论:
d(X’A)/dX =(dX’/dX)A + X’(dA/dX) = IA + X’0 = A - 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [Dy/Dx(ij) ]
重要结论:
y = U’XV= ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] =UV’
y = U’X’XU 则dy/dX = 2XUU’
y =(XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ +0 = 2(XU-V)U’ - 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
10.乘积的导数
d(f*g)/dx=(df’/dx)g+(dg/dx)f’
结论
d(x’Ax)=(d(x”)/dx)Ax+(d(Ax)/dx)(x”)=Ax+A’x (注意:”是表示两次转置)
矩阵求导 属于 矩阵计算,应该查找 Matrix Calculus 的文献:
http://www.psi.toronto.edu/matrix/intro.html#Intro
http://www.psi.toronto.edu/matrix/calculus.html
http://www.stanford.edu/~dattorro/matrixcalc.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://center.uvt.nl/staff/magnus/wip12.pdf
矩阵的f范数及其求偏导法则的更多相关文章
- 矩阵的 Frobenius 范数及其求偏导法则
cr:http://blog.csdn.net/txwh0820/article/details/46392293 一.矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...
- 矩阵的frobenius范数及其求偏导法则
例子: http://www.mathchina.net/dvbbs/dispbbs.asp?boardid=4&Id=3673
- Maths | 二次型求偏导
- 用tensorflow求偏导
# coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from _ ...
- MathType二次偏导怎么表示
求导以及求偏导运算在数学中是很重要的一个部分,尤其是在高等数学中,基本都由函数的导数与偏导组成,很多公式定理也是关于这方面的,如果少了这一部分,数学将会黯然失色.因此在文档中涉及到这些内容时,必然会少 ...
- 2范数和F范数的区别
2范数和F范数是不同的. 2范数表示矩阵或向量的最大奇异值,max(svd(X)) 而 F范数表示矩阵所有元素平方和的开方根 sqrt(∑_(x_(i,j∈X))▒x_(i,j)^2 )
- Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)
F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...
- C++实现矩阵的相加/相称/转置/求鞍点
1.矩阵相加 两个同型矩阵做加法,就是对应的元素相加. #include<iostream> using namespace std; int main(){ int a[3][3]={{ ...
- 螺旋矩阵O(1)根据坐标求值
传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...
随机推荐
- 学习SpringMVC中优秀的代码编写风格
在org.springframework.web.servlet.FrameworkServlet 中有下面这段代码 private class ContextRefreshListener impl ...
- 港交所OMD-C对接笔记
工作中需要对接港交所OMD-C的Standard版行情,现在把一些知识点做个笔记,供以后查阅. 「香港交易所领航星」巿场数据平台-证券市场(HKEX Orion Market Data Platfor ...
- Linux环境下配置JDK,java环境
1.查看Linux自带的JDK是否已安装 # java -version 2. 查看JDK信息 # rpm -qa | grep java 显示: java-x.x.x-gcj-compat-x.x. ...
- Nginx+Tomcat+MemCached 集群配置手册
系统实施文档 Nginx+Tomcat+MemCached 集群配置手册 目 录 第1章 概述 1.1 目标 互联网的快速发展带来了互联网系统的高负载和高可用性, 这要求我们在设计系统架 ...
- Spring Controller单元测试
SpringMVC controller测试较简单,从功能角度划分,可分为两种.一种是调用请求路径测试,另一种是直接调用Controller方法测试. 调用请求路径测试 通过请求路径调用,请求需要经过 ...
- CCNP第一课:默认路由(路由黑洞,路由终结)
一:功能实现 R1的环回口由R3控制下放,下放之后R4才可以ping通 代码: R1: 只需要一条静态路由,能回包就行了 ip route 20.1.1.0 255.255.255.0 10.1.1. ...
- 为什么说上ERP找死?
长期以来,管理软件领域流行着这样一句话“不上ERP等死,上了ERP找死”.根据为十九年管理软件开发的经验来看,“不上ERP等死”这句话不敢苟同,但“上了ERP找死”这句话倒有些同感.上ERP虽然不一定 ...
- Python教程(1.2)——Python交互模式
上一节已经说过,安装完Python,在命令行输入"python"之后,如果成功,会得到类似于下面的窗口: 可以看到,结尾有3个>符号(>>>).>&g ...
- Python爬知乎妹子都爱取啥名
闲来无事上知乎,看到好多妹子,于是抓取一波. 有没有兴趣?? 目标网址https://www.zhihu.com/collection/78172986 抓取分析 爬取分析 使用pandas操作文件 ...
- 一张图搞懂容器所有操作 - 每天5分钟玩转 Docker 容器技术(26)
前面我们已经讨论了容器的各种操作,对容器的生命周期有了大致的理解,下面这张状态机很好地总结了容器各种状态之间是如何转换的. 如果掌握了前面的知识,要看懂这张图应该不难.不过有两点还是需要补充一下: 可 ...