Calculate the number of toys that land in each bin of a partitioned toy box. 
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box. 
 
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.
题意:

给出一个矩形抽屉,然后有n个板子放在其中,连接上下底。给出m个玩具的坐标(视作点), 
问n+1个区间内,每个区间中有多少玩具。

思路:
首先给出的木板是从左往右排序过的,如果一个点在某个板子x左边,一定会在板子y>x 左边,所以满足单调性,二分。 
然后是判断点在直线左边,此处用的是向量p-l与向量u-l之间的关系,若叉乘值小于0,表示点p在直线l-u左边,反之则在右边。

详细请见:http://blog.csdn.net/u013557725/article/details/40146311

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
using namespace std;
struct point
{
int x,y;
point(){}
point(int _x,int _y)
{
x=_x;y=_y;
}
point operator - (const point &b) const
{
return point(x-b.x,y-b.y);
}
}u[],l[];
int n,m,x1,y1,x2,y2,ans[];
int cross(point a,point b)//计算叉乘
{
return a.x*b.y-b.x*a.y;
}
int main()
{
while (scanf("%d",&n)!=EOF&&n!=)
{
scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
memset(ans,,sizeof(ans));
for (int i=;i<n;i++)
{
int uu,ll;
scanf("%d%d",&uu,&ll);
u[i]=point(uu,y1);
l[i]=point(ll,y2);//用point储存直线的端点
}
for (int i=;i<m;i++)
{
point p;
scanf("%d%d",&p.x,&p.y);
int le=,ri=n,t=n;//因二分无法判断最右边的情况,所以t先赋值为n
while (le<=ri)
{
int mid=(le+ri)/;
if (cross(p-l[mid],u[mid]-l[mid])<=)//叉乘小于0,p在直线ui-li左边,查找左区间,否则查找右区间
{
t=mid;
ri=mid-;
}
else le=mid+;
}
++ans[t];
}
for (int i=;i<=n;i++)
{
printf("%d: %d\n",i,ans[i]);
}
printf("\n");
}
return ;
}

POJ2318 TOYS(叉积判断点与直线的关系+二分)的更多相关文章

  1. poj2318(叉积判断点在直线左右+二分)

    题目链接:https://vjudge.net/problem/POJ-2318 题意:有n条线将矩形分成n+1块,m个点落在矩形内,求每一块点的个数. 思路: 最近开始肝计算几何,之前的几何题基本处 ...

  2. POJ2318 TOYS[叉积 二分]

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14433   Accepted: 6998 Description ...

  3. POJ2318TOYS(叉积判断点与直线位置)

    题目链接 题意:一个矩形被分成了n + 1块,然后给出m个点,求每个点会落在哪一块中,输出每块的点的个数 就是判断 点与直线的位置,点在直线的逆时针方向叉积 < 0,点在直线的顺时针方向叉积 & ...

  4. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  5. Intersecting Lines--POJ1269(判断两条直线的关系 && 求两条直线的交点)

    http://poj.org/problem?id=1269 我今天才知道原来标准的浮点输出用%.2f   并不是%.2lf  所以wa了好几次 题目大意:   就给你两个线段 然后求这两个线段所在的 ...

  6. POJ 2318 叉积判断点与直线位置

    TOYS   Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...

  7. POJ-2318 TOYS 计算几何 判断点在线段的位置

    题目链接:https://cn.vjudge.net/problem/POJ-2318 题意 在一个矩形内,给出n-1条线段,把矩形分成n快四边形 问某些点在那个四边形内 思路 二分+判断点与位置关系 ...

  8. POJ2318【判断点在直线哪一侧+二分查找区间】

    题目大意:给定一个矩形和一些线段,线段将矩形分割为从左至右的若干部分,之后给出一些玩具的坐标,求每个部分中玩具的数量 #include<cstdio> #include<cstdli ...

  9. POJ2398【判断点在直线哪一侧+二分查找区间】

    题意:同POJ2318 #include<algorithm> #include<cstdio> #include<cstdlib> #include<cst ...

随机推荐

  1. 在JavaScript中使用json.js:使得js数组转为JSON编码

    在json的官网中下载json.js,然后在script中引入,以使用json.js提供的两个关键方法. 1.数组对象.toJSONString() 这个方法将返回一个JSON编码格式的字符串,用来表 ...

  2. Shell 变量详解教程之位置变量与预定义变量。

    Shell 变量分为3部分,分别是用户自定义变量.位置变量和预定义变量. 一.   自定义变量 那么,什么是变量呢?简单的说,就是让某一个特定字符串代表不固定的内容,用户定义的变量是最普通的Shell ...

  3. Spark组件

    1,Application application(应用)其实就是用spark-submit提交的程序.比方说spark examples中的计算pi的SparkPi.一个application通常包 ...

  4. 移植Linux-3.4.2内核到S3C2440

    一.BootLoader引导内核过程     1.Bootloader的工作     1.1.将内核读入内存     2.2.保存内核启动参数到指定位置,内核启动时去这个位置解析参数     3.3. ...

  5. TCO之旅

    TCO之旅 时间限制: 1 Sec  内存限制: 128 MB提交: 77  解决: 24[提交][状态][讨论版] 题目描述 我们的小强终于实现了他TCO的梦想了,爬进了TCO的全球总决赛,开始了他 ...

  6. Postgresql在线备份和恢复

    1.实验环境 OS: RedHat Linux Enterprisedb 6.3 DB: postgresql 9.3 PGHOME: /opt/PostgreSQL/9.3 PGDATA: /opt ...

  7. Python自学笔记-time模块(转)

    在Python中,通常有这几种方式来表示时间:1)时间戳 2)格式化的时间字符串 3)元组(struct_time)共九个元素.由于Python的time模块实现主要调用C库,所以各个平台可能有所不同 ...

  8. tesseract-ocr字库训练图文讲解

    第一步合成图片集 你需要把使用jTessBoxEditor工具把你的训练素材及多张图片合并成一张tif格式的图片集 第二步  生成box文件 运行tesseract命令,tesseract mjorc ...

  9. DataRow和DataRowView的区别

    可以将DataView同数据库的视图类比,不过有点不同,数据库的视图可以跨表建立视图,DataView则只能对某一个DataTable建立视图. DataView一般通过DataTable.Defau ...

  10. 玩转INotifyPropertyChanged和ObservableCollection

    转载:   http://www.cnblogs.com/Jax/archive/2009/10/13/1582128.html 本文的代码都是基于WPF的,对于Silverlight,这些技术也同样 ...