Convex(扫描线降维)
Convex
Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1838 Accepted Submission(s): 552
For each test case, the first line contain an integer n (4 ≤ n ≤ 700), indicating the number of points. Each of the next n lines contains two integers x and y (-1000000 ≤ x, y ≤ 1000000), indicating the coordinate of corresponding point.
4
0 0
0 1
1 0
1 1
4
0 0
1 0
0 1
-1 -1
0
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; #define eps 1e-8
#define pi acos(-1.0)
#define N 750 int n; struct point
{
double x, y;
point(){}
point(double _x, double _y ):x(_x), y(_y){}
}; point P[N];
double ang[*N];
int main()
{
//printf("%d", 700*699*698/6);
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%lf %lf", &P[i].x, &P[i].y); long long ans = (long long)n*(n-)*(n-)*(n-)/;//C(n,4)
for(int i = ; i < n; i++)
{
long long cnt = (long long)(n-)*(n-)*(n-)/;//cnt记录包含i的三角形个数 int c = ;
for(int j = ; j < n; j++)
{
if(i == j) continue;
ang[c++] = atan2(P[j].y-P[i].y, P[j].x - P[i].x);
} sort(ang, ang+c);
for(int j = c; j < *c; j++)
{
ang[j] = ang[j-c] + *pi;
// printf("a-- %lf\n", ang[j-c] * 180.0 /pi);
}
// puts(""); int k = ; //puts("haha");while(t < 1000000000) t++;
for(int j = ; j < c; j++)//不包含i的三角形
{
while(ang[k] - ang[j] < pi) k++;
int d = k-j-;
// printf("d = %d\n", d);
if(d > ) cnt -= d*(d-)/;
} ans -= cnt;
}
printf("%I64d\n",ans);
}
return ;
}
Convex(扫描线降维)的更多相关文章
- 【题解】Atcoder ARC#76 F-Exhausted?
第一次用霍尔定理做题..简单的来说,就是判断一张二分图上是否存在完美匹配,只需要证明对于 \(a\) 集合中的任意 \(k\) 个点来说,都与 \(b\) 集合中的 \(k\) 个点有边相连.如果不满 ...
- Luogu 3242 [HNOI2015]接水果
BZOJ4009 权限题 真的不想再写一遍了 大佬blog 假设有果实$(x, y)$,询问$(a, b)$,用$st_i$表示$i$的$dfs$序,用$ed_i$表示所有$i$的子树搜完的$dfs$ ...
- 压缩感知与稀疏模型——Convex Methods for Sparse Signal Recovery
第三节课的内容.这节课上课到半截困了睡着了,看着大家都很积极请教认真听讲,感觉很惭愧.周末不能熬太晚.这个博客就记录一下醒着时候听到的内容. Motivation 目前的时代需要处理的数据量维度可能很 ...
- 奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...
- 用scikit-learn进行LDA降维
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...
- scikit-learn一般实例之四:使用管道和GridSearchCV选择降维
本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PC ...
- [LeetCode] Convex Polygon 凸多边形
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
- 数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
随机推荐
- [置顶]
webapi token、参数签名是如何生成的
一个问题 在这里我想问大家一句,如果你向一个刚刚接触.net web后端程序开发的同学(别人刚刚也就学了webform的request,response,会提交表单的这种刚接触不久的同学),你怎么去解 ...
- 1-MySQL数据库(android连接MySQL数据库)
很好的链接 http://www.cnblogs.com/best/p/6517755.html 一个小时学会MySQL数据库 http://www.cnblogs.com/klguang/p/47 ...
- JavaScript函数(二)
在前面我们已经对函数作了简单的介绍,比如函数的定义.函数的声明.函数的调用和函数的传参等.本节将进一步介绍函数的应用,深度理解函数的各种使用. 函数是一个对象,每个函数时Function类型的一个实例 ...
- JAVA 用数组实现 ArrayList
我们知道 ArrayList 是一个集合,它能存放各种不同类型的数据,而且其容量是自动增长的.那么它是怎么实现的呢? 其实 ArrayList 的底层是用 数组实现的.我们查看 JDK 源码也可以发现 ...
- C# 防止同时调用=========使用读写锁三行代码简单解决多线程并发的问题
http://www.jb51.net/article/99718.htm 本文主要介绍了C#使用读写锁三行代码简单解决多线程并发写入文件时提示"文件正在由另一进程使用,因此该进程无 ...
- flask连接sqlalchemy数据库,实现简单的登录跳转功能
环境:python2.7 python库:flask,flask_wtf,wtforms,sqlalchemy 原理:运行app-连接数据库-打开登录页面-输入登录信息(错误->提示错误信息:正 ...
- NPOI 2.0 教程
NPOI2.0帮助官方地址 目录 1. 前言 1.1 NPOI 2.0与NPOI 1.x的区别 1.2 NPOI 2.0模块简介 1.3 自动识别并打开Excel 2003和Excel 2007文件 ...
- vue2.0表单事件的绑定
v-model 1.input type="text" <template> <div id="app"> <label for= ...
- webpack之loader实践
初识前端模板概念的开发者,通常都使用过underscore的template方法,非常简单好用,支持赋值,条件判断,循环等,基本可以满足我们的需求. 在使用Webpack搭建开发环境的时候,如果要使用 ...
- python简单爬虫技术
项目中遇到这个只是点,捣鼓了半天最后没用上,但是大概对爬虫技术有了些许了解 要先 比如: #抓取网页代码 import urllib2 import json url_data = urllib2.u ...