Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7227   Accepted: 3831

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree Tis defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges arew(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb,Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50
 
题意:
一个图可能会构成多个生成树,那么求其中生成树中最小的一条边与最大的一条边之差最小的是多少。
 
 
题解:
这题虽然不是求最小生成树,但是也很类似。 按照Kruskal的方法,把所有边排序,然后依次枚举最小边,开始构造生成树,取差值最小的便是。

 介绍一下kruskal算法:

这个算法是基于并查集的,每次从图中未加入树种的边种找到边权最小的看,这两个点的祖先是否是一个,如果是一个说明两个点已经是一个树上的了,不做操作,如果两个点来自不同的树即有不同的祖先,那么就把这两个点所代表的两个树合并起来,最后当所有的点都在一棵树上的时候停止操作,一般用合并次数来控制,即n个点需要合并n-1次,所以最好合并操作写在kruskal函数内部,这样方便统计步数

下面是这个题的代码,一定要 注意点的编号是从1开始还是从0开始,wa了好多次

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = ;
const int INF = ;
struct Edge{
int from;
int to;
int w;
bool operator < (const Edge &a) const
{
return w<a.w;
}
}edge[N*N];
int fa[N];
int Getfa(int x){return (fa[x]==x)?x:fa[x] = Getfa(fa[x]); }
int fl;
int n,m;
bool solve(int x){
int cnt = ;//共合n-1次结束
for(int i = ; i <= n; i++) fa[i] = i;//注意点是从1开始编号的
for(int i = x; i < m; i++){
int X = Getfa(edge[i].from);
int Y = Getfa(edge[i].to);
if(X != Y){
fa[X] = Y;
cnt++;
if(cnt==n-){ fl = edge[i].w;return true;}
}
}
return false;
} int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) return ;
for(int i = ; i < m; i++)
{
scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
}
sort(edge,edge+m);
int ans = INF;
for(int i = ; i < m; i++){
if(solve(i)) ans = min(ans,fl-edge[i].w);
}
if(ans==INF) puts("-1");
else printf("%d\n",ans);
}
return ;
}

Slim Span(Kruskal)的更多相关文章

  1. UVA1395 Slim Span(kruskal)

    题目:Slim Span UVA 1395 题意:给出一副无向有权图,求生成树中最小的苗条度(最大权值减最小权值),如果不能生成树,就输出-1: 思路:将所有的边按权值有小到大排序,然后枚举每一条边, ...

  2. UVALive-3887 Slim Span (kruskal)

    题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...

  3. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  4. Uva1395 POJ3522 Slim Span (最小生成树)

    Description Given an undirected weighted graph G, you should find one of spanning trees specified as ...

  5. UVa 1395 Slim Span (最小生成树)

    题意:给定n个结点的图,求最大边的权值减去最小边的权值最小的生成树. 析:这个和最小生成树差不多,从小到大枚举左端点,对于每一个左端点,再枚举右端点,不断更新最小值.挺简单的一个题. #include ...

  6. 最小生成树练习2(Kruskal)

    两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...

  7. c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树

    c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...

  8. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

  9. 克鲁斯卡尔(Kruskal)算法

    概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...

随机推荐

  1. php示例的错误记录

    最近几天在测试php的mvc,从网上找到几个示例. 先学习这一篇,http://www.cnblogs.com/q1ng/p/4529496.html 标题是  PHP的MVC框架 深入解析,其实是最 ...

  2. Nifi自定义processor

    有关nifi的基本介绍和架构可以参考nifi官网 一下介绍nifi的一些比较重要的类和自己的一些理解,我刚刚接触nifi: nifi的数据流可以表示为一个flow这是一个队列,每个数据包被封装在flo ...

  3. 【原创】java NIO FileChannel 学习笔记 FileChannel实现分析 即FileChannelImpl分析

    上文已经说了FileChannel是一个抽象类,FileChannelImpl是其实现,接下来介绍FileChannelImpl,参考代码来自OpenJDK7 首先 public class File ...

  4. powerdesigner的使用

    前言 做过建模和设计的人都知道,powerdesigner是个强大实用的工具:采用模型驱动方法,将业务与IT结合起来,可帮助部署有效的企业体系架构,并为研发生命周期管理提供强大的分析与设计技术.本文档 ...

  5. 【原创】重复造轮子之高仿EntityFramework

    前言 在上一篇<[原创]打造基于Dapper的数据访问层>中,Dapper在应付多表自由关联.分组查询.匿名查询等应用场景时经常要手动写SQL语句.看着代码里满屏的红色SQL字符串,简直头 ...

  6. MicroPython-GPRS教程之TPYBoardv702GPRS功能测试

    一.什么是TPYBoardV702 TPYBoardV702是目前市面上唯一支持通信通信功能的MicroPython开发板:支持Python3.0及以上版本直接运行.支持GPS+北斗双模通信.GPRS ...

  7. Hyperledger Fabric 1.0 从零开始(十二)——fabric-sdk-java应用【补充】

    在 Hyperledger Fabric 1.0 从零开始(十二)--fabric-sdk-java应用 中我已经把官方sdk具体改良办法,即使用办法发出来了,所有的类及文件都是完整的,在文章的结尾也 ...

  8. MySQL 5.7 InnoDB缓冲池NUMA功能支持——但是别高兴的太早

    当前CPU都已是NUMA架构,相信除了历史遗留系统,很少会有数据库跑在SMP的CPU上了.NUMA架构带来的优势无言而语,CPU更快的内存访问速度,但是带来的问题也不言而喻,特别是对于数据库的影响.M ...

  9. slave延迟很大优化方法

    一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发.简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制 ...

  10. 深入理解JVM(三)——配置参数

    JVM配置参数分为三类参数: 1.跟踪参数 2.堆分配参数 3.栈分配参数 这三类参数分别用于跟踪监控JVM状态,分配堆内存以及分配栈内存. 跟踪参数 跟踪参数用于跟踪监控JVM,往往被开发人员用于J ...