The Triangle

时间限制:1000 ms | 内存限制:65535 KB

难度:4

描述

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

(Figure 1)

Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

输入

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

输出

Your program is to write to standard output. The highest sum is written as an integer.

样例输入

5

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

样例输出

30

上传者

苗栋栋

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <cstdlib>
using namespace std; int a[110][110], dp[110][110];
#define mem(a) memset(a, 0, sizeof(a)) int main() {
int n;
while (cin >> n) {
mem(a); mem(dp);
for (int i = 0; i<n; i++) {
for (int j = 0; j<=i; j++) {
cin >> a[i][j];
}
}
for (int i = 0; i<n; i++) dp[n-1][i] = a[n-1][i];
for (int i = n-2; i>=0; i--) {
for (int j = i; j>=0; j--) {
dp[i][j] = max(a[i][j] + dp[i+1][j], a[i][j] + dp[i+1][j+1]);
}
}
cout << dp[0][0] << endl;
}
return 0;
}

南阳理工oj_The Triangle的更多相关文章

  1. 南阳理工 题目9:posters(离散化+线段树)

    posters 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 The citizens of Bytetown, AB, could not stand that ...

  2. 矩形嵌套 南阳理工ACM

    描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1, ...

  3. 单调递增最长子序列(南阳理工ACM)

    描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...

  4. 南阳理工ACM 括号匹配问题,并求出使得括号能够匹配需要新增的最小括号数(括号匹配(二))

    描述 给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起 ...

  5. 南阳理工ACM Skiing问题

    描述 Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道载一个区域中最长底 ...

  6. 南阳理工ACM1076--方案数量

    题目地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=1076 分析: <span style="font-size:18px;& ...

  7. 南阳理工oj88--汉诺塔(一)

    题目链接.http://acm.nyist.net/JudgeOnline/problem.php?pid=88 #include <stdio.h> /* //测试一下49999和500 ...

  8. 南阳理工ACM954--N!

    http://acm.nyist.net/JudgeOnline/problem.php?pid=954 循环的可怕之处!! 所有的测试数据结果完全一样.只是超时!!TimeLimitExceeded ...

  9. 南阳理工ACM975--关于521

    http://acm.nyist.net/JudgeOnline/problem.php?pid=975 这是我的源码.一直超时,一直超时. 还有itoa函数函数的使用.可以改成sprintf(str ...

随机推荐

  1. ABAP中的枚举对象

    枚举对象是枚举类型的数据对象.枚举对象只能包含类型为枚举类型的枚举值.ABAP从版本7.51开始支持它们. 这是一种常见的模式.在ABAP 7.51之前,人们通常用如下方式实现类似的功能: CLASS ...

  2. three.js实现3D模型展示

    由于项目需要展示3d模型,所以对three做了点研究,分享出来 希望能帮到大家 先看看效果: three.js整体来说 不是很难 只要你静下心来研究研究 很快就会上手的 首先我们在页面上需要创建一个能 ...

  3. Memcached的简介和使用

    缘起: 在数据驱动的web开发中,经常要重复从数据库中取出相同的数据,这种重复极大的增加了数据库负载.缓存是解决这个问题的好办法.但是ASP.NET中的虽然已经可以实现对页面局部进行缓存,但还是不够灵 ...

  4. S7-200和S7-300profibus-DP通信

    一.S7-200CN的cup可以通过EM277接入DP网络 二.CPU315-2DP做主站,S7-200CUP做从站 三. 通信题目 四.硬件组态 1.主站的DP组态,地址为2 2.EM277作为从站 ...

  5. BZOJ 4819 新生舞会

    第一句话:算出3.363636的孩子啊,你跑错流种了. 貌似上一篇我讲SDOI出原题?嘿还真是! 半个月前有一个叫WG的男人给我们搞过一场考试... ... 里面有一道题叫做保密... ...SDOI ...

  6. OpenStack运维(三):OpenStack存储节点和配置管理

    1.对象存储节点维护 1.1 重启存储节点 如果一个存储节点需要重启,直接重启即可. 1.2 关闭存储节点 如果一个存储节点需要关闭很长一段时间,可以考虑将该节点从存储环中移除. swift-ring ...

  7. 伽罗瓦域(有限域)GFq^12上元素的1→2→4→12塔式扩张(2)------第二次扩张

    接上文https://www.cnblogs.com/heshuchao/p/8196307.html 继续探讨塔式扩张的第二部分,即1→2→4→12中2 → 4的元素扩张表示方式与计算公式推导. 3 ...

  8. JavaScript Array 对象方法 以及 如何区分javascript中的toString()、toLocaleString()、valueOf()方法

    1.concat() 2.join() 3.pop() 4.push() 5.reverse() 6.shift() 7.unshift() 8.slice() 9.sort() 10.splice( ...

  9. PowerShell 函数

    PowerShell 中函数是一系列 PowerShell 语句的组合.当你通过函数的名称调用函数时,函数中的语句会被顺序的执行,就像在命令行中执行它们一样. 从 hello world 开始 fun ...

  10. [Micropython]TPYBoardV102 Dfu固件烧写教程

    TPYBoardv10x固件烧写一直是大家比较关心的问题,上次教大家用SWD接口烧写TPYBoard的固件,这次教大家用另一种方式烧写我们TPYBoardv10x的固件,直接用dfu模式烧写固件. 用 ...