Conquer a New Region

Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 657 Accepted Submission(s): 179

Problem Description
The wheel of the history rolling forward, our king conquered a new region in a distant continent.

There are N towns (numbered from 1 to N) in this region connected by several roads. It's confirmed that there is exact one route between any two towns. Traffic is important while controlled colonies are far away from the local country. We define the capacity C(i, j) of a road indicating it is allowed to transport at most C(i, j) goods between town i and town j if there is a road between them. And for a route between i and j, we define a value S(i, j) indicating the maximum traffic capacity between i and j which is equal to the minimum capacity of the roads on the route.

Our king wants to select a center town to restore his war-resources in which the total traffic capacities from the center to the other N - 1 towns is maximized. Now, you, the best programmer in the kingdom, should help our king to select this center.

 
Input
There are multiple test cases.

The first line of each case contains an integer N. (1 <= N <= 200,000)

The next N - 1 lines each contains three integers a, b, c indicating there is a road between town a and town b whose capacity is c. (1 <= a, b <= N, 1 <= c <= 100,000)

 
Output
For each test case, output an integer indicating the total traffic capacity of the chosen center town.
 
Sample Input
4
1 2 2
2 4 1
2 3 1
4
1 2 1
2 4 1
2 3 1
 
Sample Output
4
3
 
Source
 
Recommend
zhuyuanchen520

题意:
给出一棵树,找出一个点,求出所有点到这个点的权值和最大,
权值为路径上所有边权的最小值。

分析:
由于要所有点到这个点的权值和最大,把边按从大到小排序并插入。每条边连接两个集合,
且每次并入的边权值都是当前已并入边中最小的。那么,只要每次并入时判断是把a并入b
得到的权值和大还是b并入a得到的权值和大就可以了。并查集维护集合的元素个数和总的
权值。
事实上,边总会并入最大边所在的集合,为什么呢?
可以用不等式说明,比如:排序后 三条边的权值分别为x1>x2>x3
那么并x3时,如果是把x1和x2已并的集合加到x3这个集合中来,必须满足:
x1+x2(即sum)+x3<3*x3,化简得X3>(X1+X2)/2,而x2<x1,那么x3>x2(与假设矛盾,不成立)
因此,每次边的并入都是加再最大边所在的集合中。

感想:
1、首先读题的时候,对最大权值 权值取路径上所有边权的最小值  理解混淆,"最大"、"最小"。。。
      导致样例都没看明白啊啊啊。。。
     正确理解:
      那个距离其实就是容量,可以理解为路最大的承载,如果大于那个值对应的路段会倒掉。。
      那么你开车从1到3,车上最多的容量为1。。
2、完了以后再hdu oj上A的代码在zoj 上wa,最后发现是输出语句中,要把"%I64d"换成“%lld".
3、A完后,我又想既然直接就是并入最大边所在的集合,那不就直接把边都加起来就行了,事实证明不行啊。
       为什么呢?因为。。。不一定都像input给出的数据都是树啊,如果是图就有问题了。4个点,3条边,如果
       一个点孤立。因此必须要用并查集维护啊= =不对。。。题意只能是树,那又为什么不能直接加呢?求解!!

代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 200010
typedef long long ll;
using namespace std; struct node
{
int u,v,w;
bool operator <(const node a)const
{
return w>a.w;
}
}edge[N];
int cnt[N],pre[N]; //pre[]记录前一个节点编号
ll sum[N]; //sum[i]表示i为根的边权和,cnt[i]记录i为根的树中元素个数 int find(int a) //找根节点
{
return pre[a]=(pre[a]==a?a:find(pre[a]));
}
int main()
{
int n,i;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n-1;i++)
{
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
}
sort(edge+1,edge+n); //从大到小排序
for(i=1;i<=n;i++)
{
cnt[i]=1;
sum[i]=0;
pre[i]=i;
}
ll ans=0;
for(i=1;i<=n-1;i++)
{
int ra=find(edge[i].u);
int rb=find(edge[i].v);
ll bisr=sum[rb]+(ll)edge[i].w*cnt[ra];
ll aisr=sum[ra]+(ll)edge[i].w*cnt[rb];
if(bisr>aisr)
{
pre[ra]=rb;
sum[rb]=bisr;
cnt[rb]+=cnt[ra];
}
else
{
pre[rb]=ra;
sum[ra]=aisr;
cnt[ra]+=cnt[rb];
}
ans=max(ans,max(aisr,bisr));
}
//printf("%I64d\n",ans);
printf("%lld\n",ans); //zoj上需要这么写才能AC
}
return 0;
} //bisr=把a并入b,aisr=把b并入a
//注意要用long long


hdu 4424 & zoj 3659 Conquer a New Region (并查集 + 贪心)的更多相关文章

  1. zoj 3659 Conquer a New Region(并查集)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4882 代码: #include<cstdio> #inc ...

  2. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  3. ZOJ3659 Conquer a New Region 并查集

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  4. ZOJ 3659 & HDU 4424 Conquer a New Region (并查集)

    这题要用到一点贪心的思想,因为一个点到另一个点的运载能力决定于其间的边的最小权值,所以先把线段按权值从大到小排个序,每次加的边都比以前小,然后合并集合时,比较 x = findset(a) 做根或 y ...

  5. zoj 3659 Conquer a New Region

    // 给你一颗树 选一个点,从这个点出发到其它所有点的权值和最大// i 到 j的最大权值为 i到j所经历的树边容量的最小值// 第一感觉是树上的dp// 后面发现不可以// 看了题解说是并查集// ...

  6. hdu 4424 Conquer a New Region (并查集)

    ///题意:给出一棵树.树的边上都有边权值,求从一点出发的权值和最大,权值为从一点出去路径上边权的最小值 # include <stdio.h> # include <algorit ...

  7. hdu4424 Conquer a New Region 并查集/类似最小生成树

    The wheel of the history rolling forward, our king conquered a new region in a distant continent.The ...

  8. HDU 1598 find the most comfortable road 并查集+贪心

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...

  9. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

随机推荐

  1. 文字超出DIV的边框

    已经给div设置了高宽,但是文字还是会戳出div而不是换行 鼓捣了一下好像是因为这个原因 如果全是 aaaaaaaaaaaaaaaaaaaaa 这样的纯英文,那么测试的时候是不会换行的,因为浏览器认为 ...

  2. C++ STL的基本基本原理

    STL都是在内存的堆区分配的,但是其析构也是STL帮我们做好的,不用手动去delete. 1.vector 逻辑地址连续的一片内存空间,当空间不足,重新申请新的地址空间,将原有的数据复制过去,而新的地 ...

  3. 不学就吃亏的underscorejs类库学习示例 ——(集合篇)

    underscorejs是一个很不错的类库,我的很多项目都引用了这个类库,的确可以带来很多方便. 记得我当初学的时候,看underscorejs的api是看的一知半解的,甚至不明白api里的conte ...

  4. 绑定下拉框时避免触发SelectedIndexChanged事件

    在从数据库读取数据集绑定到下拉框时会立即触发其SelectedIndexChanged事件造成异常,可对其SelectedIndexChanged事件采取先解除后附加的方法解决. cmbXl_gt.V ...

  5. PHP不依赖系统自动执行机制

    不依赖系统,以及不依赖yii事物机制,则考虑人为触发.触发可以写在总体的公共页面上,但是考虑到对数据库以及WWW服务器的压力问题,程序的延迟问题,需要对执行函数进行一些优化. 首先,我们考虑对数据库的 ...

  6. jQuery网页加载进度条插件

    jquery.pace.js会自动监测你的Ajax请求,事件循环滞后,记录您的页面上准备状态和元素来决定的进度情况. 将pace.js和主题css的添加到您的网页! pace.js会自动监测你的Aja ...

  7. App适配iPhone 6/ Plus和iOS 8:10条小秘诀

    App适配iPhone 6/ Plus和iOS 8:10条小秘诀   iPhone 6iOS 8适配   (原文:raywenderlich 作者:Jack Wu 译者:@TurtleFromMars ...

  8. Windows 10正式版密钥大全,Win10激活序列号KEY大全

    最新放出来的Win10密钥:NJ4MX-VQQ7Q-FP3DB-VDGHX-7XM87 MH37W-N47XK-V7XM9-C7227-GCQG9 VK7JG-NPHTM-C97JM-9MPGT-3V ...

  9. PM加油站

    老郭讲述深航CSM 1.需求有遗漏,人员水平不足:加班导致人员流失:但是这样,客户后来还是好评,并且项目被评为深航的标杆项目:老郭也是被指定为未来项目的项目经理:--!我想起了古时候的一句话:功夫在诗 ...

  10. BZOJ 1048 分割矩阵

    Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了 ...