一,主要问题:
系统在启动的时候,是怎么加载 dts的;
Lk,kernel中都应调查。

二:参考文字
dts加载流程如下图所示:


启动过程中,bootloader(默认是bootable/bootloader/lk)会根据机器硬件信息选择合适的devicetree装入内存,把地址等相关信息传给kernel。kernel中,会根据传入的信息创建设备。
1,先从little kernel开始:
1.1 总体来说
Lk/arch/arm/crt0.S文件中语句:bl kmain
调用的是lk/kernel/main.c文件中的函数:kmain()

kmain()
  |bootstrap2()
     |arch_init()
     |platform_init()
     |target_init()
     |apps_init()//call init() of APPs defined using APP_START macro
        |aboot_init()
           |boot_linux_from_mmc()
              |//1,Device tree的第一种方法
                 |dev_tree_get_entry_info()
                    |__dev_tree_get_entry_info()
                 |memmove();
              |//2,Device tree的第二种方法
                 |dev_tree_appended()
              |boot_linux()
                 |update_device_tree()
                 |entry(0, machtype, tags_phys);//pass control to kernel
1.2 详细介绍
Aboot.c (bootable\bootloader\lk\app\aboot)

APP_START(aboot)
.init = aboot_init,
APP_END
在下面aboot_init() ---> boot_linux_from_mmc()中,调用dev_tree_get_entry_info(),里面会根据硬件(chipset和platform的id,系统实际跑时的信息在系统boot的更早阶段由N侧设置并传来,而DT中的信息由根节点的"qcom,msm-id"属性定义)来选择合适的DT,后面会把该DT装入内存,把地址等信息传给kernel(通过CPU寄存器)。
void boot_linux(void *kernel, unsigned *tags,
const char *cmdline, unsigned machtype,
void *ramdisk, unsigned ramdisk_size)
{
#if DEVICE_TREE

//更新Device Tree
ret = update_device_tree((void *)tags, final_cmdline, ramdisk, ramdisk_size);
}

/* Top level function that updates the device tree. */
int update_device_tree(void *fdt, const char *cmdline,
  void *ramdisk, uint32_t ramdisk_size)
{
int ret = 0;
uint32_t offset;

/* Check the device tree header */
//核查其magic数是否正确:version和size
ret = fdt_check_header(fdt);

/* Add padding to make space for new nodes and properties. */
//Move or resize dtb buffer
ret = fdt_open_into(fdt, fdt, fdt_totalsize(fdt) + DTB_PAD_SIZE);

/* Get offset of the memory node */
ret = fdt_path_offset(fdt, "/memory");

offset = ret;

ret = target_dev_tree_mem(fdt, offset);

/* Get offset of the chosen node */
ret = fdt_path_offset(fdt, "/chosen");

offset = ret;
/* Adding the cmdline to the chosen node */
ret = fdt_setprop_string(fdt, offset, (const char*)"bootargs", (const void*)cmdline);

/* Adding the initrd-start to the chosen node */
ret = fdt_setprop_u32(fdt, offset, "linux,initrd-start", (uint32_t)ramdisk);
if (ret)

/* Adding the initrd-end to the chosen node */
ret = fdt_setprop_u32(fdt, offset, "linux,initrd-end", ((uint32_t)ramdisk + ramdisk_size));

fdt_pack(fdt);

return ret;
}

2,Kernel中的处理

主要的数据流包括: 
(1)初始化流程,即扫描dtb并将其转换成Device Tree Structure。 
(2)传递运行时参数传递以及platform的识别 
(3)将Device Tree Structure并入linux kernel的设备驱动模型。

1,汇编部分的代码分析 
linux/arch/arm/kernel/head.S文件定义了bootloader和kernel的参数传递要求:

MMU = off, D-cache = off, I-cache = dont care, r0 = 0, r1 = machine nr, r2 = atags or dtb pointer.

目前的kernel支持旧的tag list的方式,同时也支持device tree的方式。r2可能是device tree binary file的指针(bootloader要传递给内核之前要copy到memory中),也可以是tag list的指针。在ARM的汇编部分的启动代码中(主要是head.S和head-common.S),machine type ID和指向DTB或者atags的指针被保存在变量__machine_arch_type和__atags_pointer中,这么做是为了后续C代码进行处理。
start_kernel()
  |setup_arch()
     |setup_machine_fdt()//select machine description according to DT info
2,获得machine描述符
//根据Device Tree的信息,找到最适合的machine描述符。
struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
{
/* 扫描 /chosen node,保存运行时参数(bootargs)到boot_command_line,此外,还处理initrd相关的property,并保存在initrd_start和initrd_end这两个全局变量中 */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* 扫描根节点,获取 {size,address}-cells信息,并保存在dt_root_size_cells和dt_root_addr_cells全局变量中 */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* 扫描DTB中的memory node,并把相关信息保存在meminfo中,全局变量meminfo保存了系统内存相关的信息。*/
of_scan_flat_dt(early_init_dt_scan_memory, NULL);

/* Change machine number to match the mdesc we're using */
__machine_arch_type = mdesc_best->nr;

return mdesc_best;
}
运行时参数是在扫描DTB的chosen node时候完成的,具体的动作就是获取chosen node的bootargs、initrd等属性的value,并将其保存在全局变量(boot_command_line,initrd_start、initrd_end)中。

3,将DTB转换成device node的结构的节点
在系统初始化的过程中,我们需要将DTB转换成节点是device_node的树状结构,以便后续方便操作。具体的代码位于setup_arch->unflatten_device_tree中。
void __init unflatten_device_tree(void)
{
__unflatten_device_tree(initial_boot_params, &allnodes,
early_init_dt_alloc_memory_arch);

/* Get pointer to "/chosen" and "/aliasas" nodes for use everywhere */
of_alias_scan(early_init_dt_alloc_memory_arch);
}
unflatten_device_tree函数的主要功能就是扫描DTB,将device node被组织成:
(1)global list。全局变量struct device_node *of_allnodes就是指向设备树的global list
(2)tree。
static void __unflatten_device_tree(struct boot_param_header *blob,
    struct device_node **mynodes,
    void * (*dt_alloc)(u64 size, u64 align))
{
  //此处删除了health check代码,例如检查DTB header的magic,确认blob的确指向一个DTB。
  /* scan过程分成两轮,第一轮主要是确定device-tree structure的长度,保存在size变量中 */
start = ((unsigned long)blob) +
be32_to_cpu(blob->off_dt_struct);
size = unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
size = (size | 3) + 1;

/* 初始化的时候,并不是扫描到一个node或者property就分配相应的内存,实际上内核是一次性的分配了一大片内存,这些内存包括了所有的struct device_node、node name、struct property所需要的内存。*/
mem = (unsigned long)
dt_alloc(size + 4, __alignof__(struct device_node));
((__be32 *)mem)[size / 4] = cpu_to_be32(0xdeadbeef);

/* 这是第二轮的scan,第一次scan是为了得到保存所有node和property所需要的内存size,第二次就是实打实的要构建device node tree了 */
start = ((unsigned long)blob) +
be32_to_cpu(blob->off_dt_struct);
unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
//此处略去校验溢出和校验OF_DT_END。
}
4,并入linux kernel的设备驱动模型
在linux kernel引入统一设备模型之后,bus、driver和device形成了设备模型中的铁三角。在驱动初始化的时候会将代表该driver的一个数据结构(一般是xxx_driver)挂入bus上的driver链表。device挂入链表分成两种情况,一种是即插即用类型的bus,在插入一个设备后,总线可以检测到这个行为并动态分配一个device数据结构(一般是xxx_device,例如usb_device),之后,将该数据结构挂入bus上的device链表。bus上挂满了driver和device,那么如何让device遇到“对”的那个driver呢?就是bus的match函数。
系统应该会根据Device tree来动态的增加系统中的platform_device(这个过程并非只发生在platform bus上,也可能发生在其他的非即插即用的bus上,例如AMBA总线、PCI总线)。 如果要并入linux kernel的设备驱动模型,那么就需要根据device_node的树状结构(root是of_allnodes)将一个个的device node挂入到相应的总线device链表中。只要做到这一点,总线机制就会安排device和driver的约会。当然,也不是所有的device node都会挂入bus上的设备链表,比如cpus node,memory node,choose node等。
4.1 没有挂入bus的device node
(1) cpus node的处理
暂无,只有choose node的相关处理。
(2) memory的处理
int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
    int depth, void *data)
{
char *type = of_get_flat_dt_prop(node, "device_type", NULL);
/*在初始化的时候,我们会对每一个device node都要调用该call back函数,因此,我们要过滤掉那些和memory block定义无关的node。和memory block定义有的节点有两种,一种是node name是memory@形态的,另外一种是node中定义了device_type属性并且其值是memory。*/
if (type == NULL) {
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;
/*获取memory的起始地址和length的信息。有两种属性和该信息有关,一个是linux,usable-memory,不过最新的方式还是使用reg属性。*/
reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
if (reg == NULL)
reg = of_get_flat_dt_prop(node, "reg", &l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(__be32));
/*reg属性的值是address,size数组,那么如何来取出一个个的address/size呢?由于memory node一定是root node的child,因此dt_root_addr_cells(root node的#address-cells属性值)和dt_root_size_cells(root node的#size-cells属性值)之和就是address,size数组的entry size。*/
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
u64 base, size;
base = dt_mem_next_cell(dt_root_addr_cells, &reg);
size = dt_mem_next_cell(dt_root_size_cells, &reg);
if (size == 0)
continue;
//将具体的memory block信息加入到内核中。
early_init_dt_add_memory_arch(base, size);
}
return 0;
}
(3) interrupt controller的处理
初始化是通过start_kernel->init_IRQ->machine_desc->init_irq()实现的。我们用Qualcomm MSM 8974为例来描述interrupt controller的处理过程。下面是machine描述符的定义:/arch/arm/mach-msm/board-8974.c
DT_MACHINE_START(MSM8974_DT, "Qualcomm MSM 8974 (Flattened Device Tree)")
.init_irq = msm_dt_init_irq,
.dt_compat = msm8974_dt_match,
...
MACHINE_END
源码文件:/arch/arm/mach-msm/board-dt.c
void __init msm_dt_init_irq(void)
{
struct device_node *node;

of_irq_init(irq_match);
node = of_find_matching_node(NULL, mpm_match);
}
of_irq_init函数:遍历Device Tree,找到匹配的irqchip。具体的代码如下:
void __init of_irq_init(const struct of_device_id *matches)
{
/*遍历所有的node,寻找定义了interrupt-controller属性的node,如果定义了interrupt-controller属性则说明该node就是一个中断控制器。*/
for_each_matching_node(np, matches) {
if (!of_find_property(np, "interrupt-controller", NULL))
continue;
/*分配内存并挂入链表,当然还有根据interrupt-parent建立controller之间的父子关系。对于interrupt controller,它也可能是一个树状的结构。*/
desc = kzalloc(sizeof(*desc), GFP_KERNEL);

desc->dev = np;
desc->interrupt_parent = of_irq_find_parent(np);
if (desc->interrupt_parent == np)
desc->interrupt_parent = NULL;
list_add_tail(&desc->list, &intc_desc_list);
}

/*正因为interrupt controller被组织成树状的结构,因此初始化的顺序就需要控制,应该从根节点开始,依次递进到下一个level的interrupt controller。 */
while (!list_empty(&intc_desc_list)) {
/*intc_desc_list链表中的节点会被一个个的处理,每处理完一个节点就会将该节点删除,当所有的节点被删除,整个处理过程也就是结束了。*/
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
const struct of_device_id *match;
int ret;
of_irq_init_cb_t irq_init_cb;
/*最开始的时候parent变量是NULL,确保第一个被处理的是root interrupt controller。在处理完root node之后,parent变量被设定为root interrupt controller,因此,第二个循环中处理的是所有parent是root interrupt controller的child interrupt controller。也就是level 1(如果root是level 0的话)的节点。*/
if (desc->interrupt_parent != parent)
continue;

list_del(&desc->list);//从链表中删除
match = of_match_node(matches, desc->dev);//匹配并初始化
//match->data是初始化函数
if (WARN(!match->data,
   "of_irq_init: no init function for %s\n",
   match->compatible)) {
kfree(desc);
continue;
}
irq_init_cb = match->data;//执行初始化函数
ret = irq_init_cb(desc->dev, desc->interrupt_parent);
/*处理完的节点放入intc_parent_list链表,后面会用到*/
list_add_tail(&desc->list, &intc_parent_list);
}

/* 对于level 0,只有一个root interrupt controller,对于level 1,可能有若干个interrupt controller,因此要遍历这些parent interrupt controller,以便处理下一个level的child node。 */
desc = list_first_entry(&intc_parent_list, typeof(*desc), list);
list_del(&desc->list);
parent = desc->dev;
kfree(desc);
}
}
只有该node中有interrupt-controller这个属性定义,那么linux kernel就会分配一个interrupt controller的描述符(struct intc_desc)并挂入队列。通过interrupt-parent属性,可以确定各个interrupt controller的层次关系。在scan了所有的Device Tree中的interrupt controller的定义之后,系统开始匹配过程。一旦匹配到了interrupt chip列表中的项次后,就会调用相应的初始化函数。

(DT系列三)系统启动时, dts 是怎么被加载的的更多相关文章

  1. 【转】(DT系列三)系统启动时, dts 是怎么被加载的

    原文网址:http://www.cnblogs.com/biglucky/p/4057481.html 一,主要问题:系统在启动的时候,是怎么加载 dts的:Lk,kernel中都应调查. 二:参考文 ...

  2. VSTO学习笔记(三) 开发Office 2010 64位COM加载项

    原文:VSTO学习笔记(三) 开发Office 2010 64位COM加载项 一.加载项简介 Office提供了多种用于扩展Office应用程序功能的模式,常见的有: 1.Office 自动化程序(A ...

  3. 开启Microsoft SQL Management时,如果出现"未能加载包

    Ms Sql server 2005在开启Microsoft SQL Management时,如果出现"未能加载包“Microsoft SQL Management Studio Packa ...

  4. JavaWeb 服务启动时,在后台启动加载一个线程

    JavaWeb 服务启动时,在后台启动加载一个线程. 目前,我所掌握的一共有两种方法,第一种是监听(Listener),第二种是配置随项目启动而启动的Servlet. 下面对这两种方法做一简单的介绍, ...

  5. VS调试时JSON格式文件无法加载

    VS调试时JSON格式文件无法加载 报错: 解决:在项目中的web.config中进行配置,configuration节中添加以下部份: <system.webServer> <st ...

  6. Android批量图片加载经典系列——afinal框架实现图片的异步缓存加载

    一.问题描述 在之前的系列文章中,我们使用了Volley和Xutil框架实现图片的缓存加载(查看系列文章:http://www.cnblogs.com/jerehedu/p/4607599.html# ...

  7. 《Entity Framework 6 Recipes》中文翻译系列 (43) ------ 第八章 POCO之使用POCO加载实体

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 8-2  使用POCO加载关联实体 问题 你想使用POCO预先加载关联实体. 解决方 ...

  8. Android批量图片加载经典系列——使用LruCache、AsyncTask缓存并异步加载图片

    一.问题描述 使用LruCache.AsyncTask实现批量图片的加载并达到下列技术要求 1.从缓存中读取图片,若不在缓存中,则开启异步线程(AsyncTask)加载图片,并放入缓存中 2.及时移除 ...

  9. Jetpack系列:Paging组件帮你解决分页加载实现的痛苦

    相信很多小伙伴们在项目实战中,经常会用到界面的分页显示.加载更多等功能.需要针对具体功能做针对性开发和调试,耗时耗力. Paging组件的使用将这部分的工作简化,从而让开发者更专注于业务的具体实现.下 ...

随机推荐

  1. 完整的 AJAX 写法(支持多浏览器)

    代码如下: <script type="text/javascript"> var xmlhttp; function Submit() { //1.创建 XMLHtt ...

  2. linux下用户以及用户组管理

    /etc/passwd ‘/etc/passwd’ 由 ‘:’ 分割成7个字段,每个字段的具体含义是: 1)用户名.用户名字符可以是大小写字母.数字.减号(不能出现在首位).点以及下划线,其他字符不合 ...

  3. InkPicture 控件使用_01

    private System.ComponentModel.Container components = null;  private Microsoft.Ink.InkOverlay m_InkOv ...

  4. windows 查看某个端口号被占用情况

    1.查看3798端口是否被占用,以及占用端口的进程PID netstat -ano |findstr 3798 C:\Users\zhaojingbo>netstat -ano|findstr ...

  5. hibernate配置文件详细解释

    <!--标准的XML文件的起始行,version='1.0'表明XML的版本,encoding='gb2312'表明XML文件的编码方式--> <?xml version='1.0' ...

  6. iOS Xcode制作模板类-b

    为什么要定义模板类 遵守代码规范可以提高代码可读性, 降低后期维护成本. 当我们定下了一个团队都认同的代码规范, 如我们要求所有的viewController的代码都得按照下面来组织: #pragma ...

  7. 布局(layout)文件图形界面不能显示:An error has occurred. See error log for more details. java.lang.NullPointe

    #问题解析# Android工程中Layout文件夹下的布局文件图形界面无法显示,一般发生这种情况在导入工程操作后极易出现,因为可能eclipse使用的sdk版本不同,target类型不同,所用And ...

  8. Google面试题之100层仍两个棋子

    一道Google面试题,题目如下:"有一个100层高的大厦,你手中有两个相同的玻璃围棋子.从这个大厦的某一层扔下围棋子就会碎,用你手中的这两个玻璃围棋子,找出一个最优的策略,来得知那个临界层 ...

  9. 创建虚拟桌面的代码(重启桌面进程)(使用GetThreadDesktop,CreateDesktop,SetThreadDesktop等函数)

    在upk 里挖坟得来,有兴趣查查这几个函数... #include "windows.h" #pragma comment(lib,"user32.lib") ...

  10. 抽象类 接口 虚函数(C++模拟,个人见解)

    1.抽象类里面可以有非抽象方法但接口里只能有抽象方法声明方法的存在而不去实现它的类被叫做抽像类(abstract class),它用于要创建一个体现某些基本行为的类,并为该类声明方法,但不能在该类中实 ...