bzoj3028食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028
好吧,这是我第一道生成函数的题目。
先搞出各种食物的生成函数:
汉堡:$1+x^2+x^4+...=\frac{1}{1-x^2}$
可乐:$1+x$
鸡腿:$1+x+x^2=\frac{1-x^3}{1-x}$
蜜桃多:$x+x^3+x^5+...=\frac{x}{1-x^2}$
鸡块:$1+x^4+x^8+...=\frac{1}{1-x^4}$
包子:$1+x+x^2+x^3=\frac{1-x^4}{1-x}$
土豆片炒肉:$1+x$
面包:$1+x^3+x^6...=\frac{1}{1-x^3}$
相乘得:$f(x)=\frac{x}{(1-x)^4}$
然后接下来有两种方法:
(1)广义二项式定理
$f(x)=\frac{x}{(1-x)^4}$
$=x(1-x)^{-4}$
$=x\sum\limits_{k=0}^{\infty }C_{4+k-1}^{k}x^k$
$=x\sum\limits_{k=0}^{\infty }C_{k+3}^{3}x^k$
所以$x^n$的系数为$C_{n-1+3}^{3}=C_{n+2}^{3}$
(2)麦克劳林级数展开式
我们有如下定理:
$$f(x)=\sum\limits_{n=0}^{\infty }f^{(n)}(0)\frac{x^n}{n!}$$
$$其中f^{(n)}(x)是f(x)的n阶导数$$
回到本题
$f^{(n)}(x)=[x(1-x)^{-4}]^{(n)}$
$=\sum\limits_{k=0}^{n}C_{n}^{k}x^{(k)}[(1-x)^{-4}]^{(n-k)}$
$易知当k>1时,x^{(k)}=0,所以$
$=C_{n}^{0}x^{(0)}[(1-x)^{-4}]^{(n)}+C_{n}^{1}x^{(1)}[(1-x)^{-4}]^{(n-1)}$
$=xC_{-4}^{n}n!(1-x)^{-4-n}+nC_{-4}^{n-1}(n-1)!(1-x)^{-4-n+1}$
$易知$
$C_{-4}^{n}=\frac{(-4)\times(-5)\times...\times(-4-n+1)}{n!}=\frac{(-1)^n4\times5\times...\times(n+3)}{n!}=(-1)^nC_{n+3}^{n}$
$C_{-4}^{n-1}=(-1)^{n-1}C_{n+2}^{n-1}$
$所以$
$=x(-1)^nC_{n+3}^{n}n!(1-x)^{-4-n}+n(-1)^{n-1}C_{n+2}^{n-1}(n-1)!(1-x)^{-4-n+1}$
$=\frac{(n+3)!}{3!}x(x-1)^{-n-4}+\frac{n(n+2)!}{3!}(x-1)^{-n-3}$
$所以x^n前的系数为\frac{f^{(n)}(0)}{n!}=C_{n+2}^{3}$
bzoj3028食物的更多相关文章
- BZOJ3028 食物 (生成函数)
首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...
- BZOJ3028食物——生成函数+泰勒展开
题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...
- BZOJ3028 食物(生成函数)
显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...
- 2018.12.30 bzoj3028: 食物(生成函数)
传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21 ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...
- BZOJ3028: 食物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3028 题解:列出母函数乘起来化简之后再展开,用插板法即可. 代码: #include<c ...
- BZOJ3028: 食物(生成函数)
题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...
- 母函数入门笔记(施工中…
定义:对于一个数列,它的母函数(即生成函数)为 为了对这个准确求值,我们设 举一个简单的例子 例1 对于数列 他的生成函数为 ,那么应用一下等比数列求和公式 这里由于 所以当时 那么 例 ...
随机推荐
- Linux 信号表
信号 取值 默认动作 含义(发出信号的原因) SIGHUP 1 Term 终端的挂断或进程死亡 SIGINT 2 Term 来自键盘的中断信号 SIGQUIT 3 Core 来自键盘的离开信号 SIG ...
- Creating a Background Service ——IntentService
The IntentService class provides a straightforward structure for running an operation on a single ba ...
- 浪漫桃心的Android表白程序
本文转载于 huachao1001的专栏 几年前,看到过有个牛人用HTML5绘制了浪漫的爱心表白动画.地址在这:浪漫程序员 HTML5爱心表白动画.发现原来程序员也是可以很浪……漫…..的.那么在A ...
- OJ常见问题及必须认识的对拍处理水题
HDUOJ: 常见问题及解答 Q: Online Judge(以下简称OJ)支持哪些语言? A: 目前为止,HDOJ支持C.C++.Pascal和Java四种语言. Q: 有什么条件判断我的程序是在O ...
- Spring—请求映射之URL路径映射
Spring2.5引入注解式处理器支持,通过@Controller 和 @RequestMapping注解定义我们的处理器类.并且提供了一组强大的注解:需要通过处理器映射DefaultAnnotati ...
- session在登录中的使用
package action.exam; import java.util.Map; import com.opensymphony.xwork2.ActionContext; import com. ...
- 黑马程序员-hashtable
散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列 ...
- WebStorm shortcuts.
- 该项目中不存在目标 precomputecompiletypescript The target "PreComputeCompileTypeScript" does not exist in the project
Open Microsoft.TypeScript.targets file located under C:\Program Files (x86)\MSBuild\Microsoft\Visual ...
- cas sso单点登录系列3_cas-server端配置认证方式实践(数据源+自定义java类认证)
转:http://blog.csdn.net/ae6623/article/details/8851801 本篇将讲解cas-server端的认证方式 1.最简单的认证,用户名和密码一致就登录成功 2 ...