题意:给你A,B,让求A^B所有的因子和模上9901

思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn

那么A^B = p1^(B*x1) * p2^(B*x2) *...* pn^(B*xn)

那么A^B所有的素因子和就是

(p1^0 + p1^1 + p1^2 + ... + p1^(B*x1) ) * (p2^0 + p2^1 + ... + p2^(B*x2) ) * ... * (pn^0 + pn^1 + ... + pn^(B*xn))

可以看出每一个括号内都是等比数列,但是不要用等比数列公式,因为有除法(刚开始我用除法,然后求了模的逆元,wa到爽死),因为不一定满足乘法逆元所需要的条件,除数与模数可能不互素(除数可能是模数的多少倍)。既然不能用公式,那么就要借助于二分了。比如如下式子求和:A1+A2+A3+A= A1+A2+A2(A1+A2)。通过这个式子发现,只要求出来A2就行了,然后只要计算一次A1+A2,就可以省掉一半的计算量。那么同理A1+A2也可以继续往下分。

现在推广到一般式。A1+A2+...+An

1) n为偶数: A1+A2+...+An = A1+A2+ ...+A(n/2)+ A(n/2)(A1+A2+...+A(n/2))

2) n为奇数: A1+A2+...+An = A1+A2+ ...+A(n/2)+ A(n/2)(A1+A2+...+A(n/2)) + An

推出来这些就可以递归求解了。

注:找素因子时,打个素数表,只需要打到sqrt(n)就行了,因为只可能在sqrt(n)里面,如果有比sqrt(n)大的两个素因子,乘积自然就大于n了,所以只需要sqrt(n)就可以了。因为就算有一个大素数和一个小素数相乘得来,那么在约掉小素数的时候,只剩大素数了,这会就直接跑到循坏外判断了。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int maxn = ;
const ll mod = 9901LL;
ll A, B;
struct Factor {
ll fac;
ll cnt;
}factor[maxn];
int tot;
bool prime[maxn + ];
int pr[maxn];//素数表
int pr_cnt;
void init_prime()
{
memset(prime, true, sizeof(prime));
prime[] = prime[] = false;
for (int i = ; i * i <= maxn; i++)
if (prime[i])
for (int j = i + i; j < maxn; j += i)
prime[j] = false;
pr_cnt = ;
for (int i = ; i <= maxn; i++)
if (prime[i])
pr[pr_cnt++] = i;
}
void init()//找到所有的素因子
{
tot = ;
memset(factor, , sizeof(factor));
for (int i = ; i < pr_cnt && pr[i] <= A; i++)
{
if (A % pr[i] == )
{
factor[tot].fac = pr[i];
while (A % pr[i] == )
{
factor[tot].cnt++;
A /= pr[i];
}
factor[tot].cnt *= B;
tot++;
}
}
if (A > )
{
factor[tot].fac = A;
factor[tot++].cnt = B;
}
}
ll quickpow(ll a, ll b, ll mod)
{
ll ans = 1LL;
while (b)
{
if (b & ) ans = ans * a % mod;
a = a * a % mod;
b >>= ;
}
return ans % mod;
}
ll binary_pow(ll a, ll b, ll mod)//计算等比数列的和
{
if (b == ) return 1LL;
if (b == ) return a;
ll ans = ;
if (b & )
{
ans = quickpow(a, b, mod);
ans = (ans + (quickpow(a, b / , mod) + 1LL) % mod * binary_pow(a, b / , mod)) % mod;
}
else
ans = (quickpow(a, b / , mod) + 1LL) % mod * binary_pow(a, b / , mod) % mod;
return ans;
}
void solve()
{
if (B == )
{
puts("");
return;
}
if (A == )
{
puts("");
return;
}
init();
ll ans = 1LL;
for (int i = ; i < tot; i++)
{
ans = ans * (binary_pow(factor[i].fac, factor[i].cnt, mod) + 1LL) % mod;
}
cout << ans << endl;
}
int main()
{
init_prime();
while (cin >> A >> B)
{
solve();
}
return ;
}

POJ 1845 Sumdiv(因子分解+快速幂+二分求和)的更多相关文章

  1. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. POJ 1845 Sumdiv

    快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...

  4. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  5. POJ 1845 Sumdiv (整数拆分+等比快速求和)

    当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...

  6. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  7. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  8. POJ 3233 矩阵快速幂&二分

    题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...

  9. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

随机推荐

  1. http://jinnianshilongnian.iteye.com/blog/2018936

    http://jinnianshilongnian.iteye.com/blog/2018936

  2. Google protobuf的安装及使用

    最近应为工作的需要,合作的部门提供了protobuf的接口,总结了一下使用的过程和方法如下: 下载protobuf-2.3.0: http://protobuf.googlecode.com/file ...

  3. [C#网络编程系列]专题一:网络协议简介

    转自:http://www.cnblogs.com/zhili/archive/2012/08/11/NetWorkProgramming.html 因为这段时间都在研究C#网络编程的一些知识, 所以 ...

  4. Windows环境下Android NDK环境搭建

    前面介绍Windows下Android 开发环境配置,主要是面向JAVA开发环境,对只做APK上层应用开发人员来讲,基本够用了,由于Linux系统的权限限制和Android封装架构限制,很多涉及底层设 ...

  5. ARM学习笔记5——程序状态寄存器

    当前程序状态寄存器CPSR可以在任何位处理器模式下被访问,它包含条件码标志.中断控制.当前处理器模式以及其他状态和控制信息.CPSR的结构图如下: 一.条件标志位 CPSR最高4位:N(Negativ ...

  6. UVA 11624 Fire! (bfs)

    算法指南白书 分别求一次人和火到达各个点的最短时间 #include<cstdio> #include<cstring> #include<queue> #incl ...

  7. JavaScript高级程序设计29.pdf

    insertAdjacentHTML方法 插入标记最后一个新增的方式是insertAdjacentHTML()方法,它接收两个参数:插入位置和要插入的HTML文本,第一个参数必须是下列值之一: &qu ...

  8. ubuntu14.04安装ia32-lib

    sudo apt-get install libc6:i386 sudo -i cd /etc/apt/sources.list.d echo "deb http://old-release ...

  9. linux 多线程基础4

    六.线程的作用域 函数pthread_attr_setscope和pthread_attr_getscope分别用来设置和得到线程的作用域,这两个函数的定义如下: 7. 名称:: pthread_at ...

  10. 研磨设计模式解析及python代码实现——(一)简单工厂模式

    最近在学设计模式,正巧书之前学了些python,但用的还不是很成熟.<研磨设计模式>书上只给了java代码,本着以练手为目标,我照着书上打了一遍java代码,在仔细体会其思想后,将其写成了 ...