BZOJ 1057 棋盘制作
Description
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
Input
第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
Output
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
对于100%的数据,N, M ≤ 2000
for (int i = ;i <= n;++i)
{
int lo = ,ro = m+;
for (int j = ;j <= m;++j)
{
if (s[i][j] == sign) up[i][j] = le[i][j] = ,lo = j;
else up[i][j] = i==?:up[i-][j]+,le[i][j] = i==?lo+:max(le[i-][j],lo+);
}
for (int j = m;j;--j)
{
if (s[i][j] == sign) ri[i][j] = m+,ro = j;
else ri[i][j] = i==?ro-:min(ri[i-][j],ro-);
int a = up[i][j],b = ri[i][j]-le[i][j]+,p = min(a,b);
ans1 = max(ans1,p*p); ans2 = max(ans2,a*b);
}
}
总代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 2010
int s[maxn][maxn],le[maxn][maxn],ri[maxn][maxn];
int up[maxn][maxn],n,m,ans1,ans2; inline void work()
{
for (int i = ;i <= n;++i)
{
for (int j = ;j <= m;++j)
{
if (i == || s[i][j] == s[i-][j]) up[i][j] = ;
else up[i][j] = up[i-][j]+;
}
}
} inline void deal()
{
for (int i = ;i <= n;++i)
for (int j = ;j <= m;++j)
if ((i + j)&) s[i][j] ^= ;
} inline void work(int sign)
{
for (int i = ;i <= n;++i)
{
int lo = ,ro = m+;
for (int j = ;j <= m;++j)
{
if (s[i][j] == sign) up[i][j] = le[i][j] = ,lo = j;
else up[i][j] = i==?:up[i-][j]+,le[i][j] = i==?lo+:max(le[i-][j],lo+);
}
for (int j = m;j;--j)
{
if (s[i][j] == sign) ri[i][j] = m+,ro = j;
else ri[i][j] = i==?ro-:min(ri[i-][j],ro-);
int a = up[i][j],b = ri[i][j]-le[i][j]+,p = min(a,b);
ans1 = max(ans1,p*p); ans2 = max(ans2,a*b);
}
}
} int main()
{
freopen("1057.in","r",stdin);
freopen("1057.out","w",stdout);
scanf("%d %d",&n,&m);
for (int i = ;i <= n;++i)
for (int j = ;j <= m;++j) scanf("%d",s[i]+j);
deal(); work(); work();
printf("%d\n%d",ans1,ans2);
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 1057 棋盘制作的更多相关文章
- BZOJ 1057 棋盘制作(最大01相间子矩阵)
求最大01相间子矩阵可以转换为求最大全0子矩阵.只需把棋盘(x+y)为奇数的取反,而该问题可以用经典的悬线法O(n^2)的求解. 悬线法呢. 首先定义b[i][j],为a[i][j]向上的最大连续0的 ...
- 【以前的空间】bzoj [ZJOI2007]棋盘制作
具体可以去跪<浅谈用极大化思想解决最大子矩形问题>(p.s. 蒟蒻跪了还是很晕,不过想到之前usaco好像是最后一章的一道题……看了下代码顿然醒悟) 也就是如果用o(nm)的方法维护一个极 ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)
[ZJOI2007]棋盘制作 时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...
- 棋盘制作 BZOJ 1057
棋盘制作 [问题描述] 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴 ...
随机推荐
- 实战DeviceIoControl 之中的一个:通过API訪问设备驱动程序
P.bhw98 { PADDING-RIGHT: 0px; PADDING-LEFT: 0px; FONT-SIZE: 9pt; PADDING-BOTTOM: 0px; MARGIN: 10px 0 ...
- [转] 学习使用:before和:after伪元素
http://www.w3cplus.com/css3/learning-to-use-the-before-and-after-pseudo-elements-in-css.html 如果你一直密切 ...
- iOS View的Frame和bounds之区别,setbounds使用(深入探究)
前言: 在ios开发中经常遇到两个词Frame和bounds,本文主要阐述Frame和bound的区别,尤其是bound很绕,较难理解. 一.首先,看一下公认的资料: 先看到下面的代码你肯定就明白了一 ...
- linux下杀死进程(kill)的N种方法 【转】
转自 http://blog.csdn.net/andy572633/article/details/7211546 首先,用ps查看进程,方法如下: $ ps -ef ……smx 182 ...
- Python - BeautifulSoup 安装
BeautifulSoup 3.x 1. 下载 BeautifulSoup. [huey@huey-K42JE python]$ wget http://www.crummy.com/software ...
- Store update, insert, or delete statement affected an unexpected number of rows ({0}).
问题描述 Store update, insert, or delete statement affected an unexpected number of rows ({0}). Entities ...
- 在线预览文件(pdf)
1.flash版(借助flexpaper工具) 可以把pdf文件用pdf2swf工具转换成swf文件.下载地址http://www.swftools.org/download.html 转换代码如下: ...
- jquery ui 插件------------------------->sortable
<!doctype html><html lang="en"><head> <meta charset="utf-8" ...
- OC - 29.自定义布局实现瀑布流
概述 瀑布流是电商应用展示商品通常采用的一种方式,如图示例 瀑布流的实现方式,通常有以下几种 通过UITableView实现(不常用) 通过UIScrollView实现(工作量较大) 通过UIColl ...
- angular template浅析
在我们浏览的页面中有大的网站,也有中小型网站,类型不同其中的页面也就不同,但是纵观大部分的网页是否有什么相同的地方呢?如果浏览的是一般的门户网站或者是什么小型的页面的话这种感觉就不是很明显,但是如果关 ...