History

By the mid 1960s, the growing popularity of online time-sharing computer systems, which had made their resources accessible to users over communications lines, had created new concerns about system security. As the scholars Deborah Russell and G. T. Gangemi, Sr. explain, "the 1960s marked the true beginning of the age of computer security."[5] In June 1965, for example, several of the country's leading computer security experts held one of the first major conferences on system security, one that was hosted by the government contractor, the System Development Corporation (SDC). During the conference, it was noted that one SDC employee had been able to easily undermine the various system safeguards that had been added to SDC's AN/FSQ-32 time-sharing computer system. In the hopes that the further study of system security could be useful, the attendees requested "studies to be conducted in such areas as breaking security protection in the time-shared system." In other words, the conference participants initiated one of the first formal requests to use computer penetration as tool for studying system security.[6]

At the Spring 1967 Joint Computer Conference, many of the country's leading computer specialists met again to discuss their concerns about system security. During this conference, the computer security experts Willis Ware, Harold Petersen, and Rein Tern, all of the RAND Corporation, and Bernard Peters of the National Security Agency (NSA), all used the phrase "penetration" to describe an attack against a computer system. In a paper, Ware referred to the military's remotely accessible time-sharing systems, warning that "deliberate attempts to penetrate such computer systems must be anticipated." His colleagues Petersen and Turn shared the same concerns, observing that on-line communication systems "are vulnerable to threats to privacy," including "deliberate penetration". Bernard Peters of the NSA made the same point, insisting that computer input and output "could provide large amounts of information to a penetrating program." During the conference, computer penetration would become formally identified as a major threat to online computer systems.[7]

The threat posed by computer penetration was next outlined in a major report organized by the United States Department of Defense (DoD) in late 1967. Essentially, DoD officials turned to Willis Ware to lead a task force of experts from NSA, CIA, DoD, academia, and industry to formally assess the security of time-sharing computer systems. By relying on many of the papers that had been presented during the Spring 1967 Joint Computer Conference, the task force largely confirmed the threat to system security posed by computer penetration. Although Ware's report was initially classified, many of the country's leading computer experts quickly identified the study as the definitive document on computer security.[8] Jeffrey R. Yost of the Charles Babbage Institute has more recently described the Ware report as "by far the most important and thorough study on technical and operational issues regarding secure computing systems of its time period."[9] In effect, the Ware report reaffirmed the major threat posed by computer penetration to the new online time-sharing computer systems.

To get a better understanding of system weaknesses, the federal government and its contractors soon began organizing teams of penetrators, known as tiger teams, to use computer penetration as a means for testing system security. Deborah Russell and G. T. Gangemi, Sr. stated that during the 1970s "'tiger teams' first emerged on the computer scene. Tiger teams were government and industry sponsored teams of crackers who attempted to break down the defenses of computer systems in an effort to uncover, and eventually patch, security holes.".[10] One of the leading scholars on the history of computer security, Donald MacKenzie, similarly points out that "RAND had done some penetration studies (experiments in circumventing computer security controls) of early time-sharing systems on behalf of the government."[11] Jeffrey R. Yost of the Charles Babbage Institute, in his own work on the history of computer security, also acknowledges that both the RAND Corporation and the SDC had "engaged in some of the first so-called 'penetration studies' to try to infiltrate time-sharing systems in order to test their vulnerability."[12] In virtually all of these early studies, the tiger teams would succeed in breaking into their targeted computer systems, as the country's time-sharing systems had very poor defenses.

Of the earliest tiger team actions, the efforts at the RAND Corporation demonstrated the usefulness of penetration as a tool for assessing system security. At the time, one RAND analyst noted that the tests had "demonstrated the practicality of system-penetration as a tool for evaluating the effectiveness and adequacy of implemented data security safe-guards." In addition, a number of the RAND analysts insisted that the penetration test exercises all offered several benefits that justified its continued use. As they noted in one paper, "a penetrator seems to develop a diabolical frame of mind in his search for operating system weaknesses and incompleteness, which is difficult to emulate." For these reasons and others, many analysts at RAND recommended the continued study of penetration techniques for their usefulness in assessing system security.[13]

Perhaps the leading computer penetration expert during these formative years was James P. Anderson, who had worked with the NSA, RAND, and other government agencies to study system security. In early 1971, the U.S. Air Force contracted with Anderson's private company to study the security of its time-sharing system at the Pentagon. In his study, Anderson outlined a number of the major factors that were involved in computer penetration. The general attack sequence, as Anderson described it, involved a number of steps, including: "1. Find an exploitable vulnerability. 2. Design an attack around it. 3. Test the attack. 4. Seize a line in use... 5. Enter the attack. 6. Exploit the entry for information recovery.’’ Over time, Anderson's description of the general steps involved in computer penetration would help guide many other security experts, as they continued to rely on this technique to assess the security of time-sharing computer systems.[14]

In the following years, the use of computer penetration as a tool for security assessment would only become more refined and sophisticated. In the early 1980s, the journalist William Broad briefly summarized the ongoing efforts of tiger teams to assess system security. As Broad reported, the DoD-sponsored report by Willis Ware had "showed how spies could actively penetrate computers, steal or copy electronic files and subvert the devices that normally guard top-secret information. The study touched off more than a decade of quiet activity by elite groups of computer scientists working for the Government who tried to break into sensitive computers. They succeeded in every attempt."[15] While these various studies may have suggested that computer security in the U.S. remained a major problem, the scholar Edward Hunt has more recently made a broader point about the extensive study of computer penetration as a security tool. As Hunt suggests in a recent paper on the history of penetration testing, the defense establishment ultimately "created many of the tools used in modern day cyberwarfare," as it carefully defined and researched the many ways in which computer penetrators could hack into targeted systems.[16]

Standards and certification

The Information Assurance Certification Review Board (IACRB) manages a penetration testing certification known as the Certified Penetration Tester (CPT). The CPT requires that the exam candidate pass a traditional multiple choice exam, as well as pass a practical exam that requires the candidate to perform a penetration test against servers in a virtual machine environment.[17]

Tools

This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (January 2013)

Specialized OS distributions

There are several operating system distributions, which are geared towards performing penetration testing.[18] Distributions typically contains pre-packaged and pre-configured set of tools. This is useful because the penetration tester does not have to hunt down a tool when it is required. This may in turn lead to further complications such as compile errors, dependencies issues, configuration errors, or simply acquiring additional tools may not be practical in the tester's context.

Popular examples are Kali Linux (replacing BackTrack as of December 2012) based on Debian Linux, Pentoo based on Gentoo Linux and WHAX based on Slackware Linux. There are many other specialized operating systems for penetration testing, each more or less dedicated to a specific field of penetration testing.

Software frameworks

Automated testing tools

This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (January 2013)

The process of penetration testing may be simplified as two parts:

  • Discovering a combination of legal operations that will let the tester execute an illegal operation: unescaped SQL commands, unchanged salts in source-visible projects, human relationships, using old hash/crypto functions
A single flaw may not be enough to enable a critically serious exploit. Leveraging multiple known flaws and shaping the payload in a way that will be regarded as valid operation is almost always required. Metasploit provides a ruby library for common tasks and maintains a database of known exploits.
Under budget and time constraints, fuzzing is a common technique to discover vulnerabilities. What it aims to do is to get an unhandled error through random input. Random input allows the tester to use less often used code paths. Well-trodden code paths have usually been rid of errors. Errors are useful because they either expose more information, such as HTTP server crashes with full info tracebacks or are directly usable such as buffer overflows. A way to see the practicality of the technique is to imagine a website having 100 text input boxes. A few of them are vulnerable to SQL injections on certain strings. Submitting random strings to those boxes for a while will hopefully hit the bugged code path. The error shows itself as a broken HTML page half rendered because of SQL error. In this case, only text boxes are treated as input streams. But software systems have many possible input streams such as cookie/session data, the uploaded file stream, RPC channels, or the memory. In any of these input streams, errors can happen. The goal is first, to get an unhandled error, and second, come up with a theory on the nature of the flaw based on the failed test case. Then write an automated tool to test the theory until it is correct. After that, with luck it should become obvious how to package the payload so that its execution will be triggered. If this is not viable, one can hope that another error produced by the fuzzer will yield more fruit. The use of a fuzzer means time is not wasted on checking completely adequate code paths where exploits are unlikely to occur.
  • Specifying the illegal operation, also known as payloads according to Metasploit terminology: remote mouse controller, webcam peeker, ad popupper, botnet drone or password hash stealer. Refer to Metasploit payload list for more examples.

Some companies maintain large databases of known exploits and provide products to automatically test target systems if they are vulnerable.

See also

Notes

  1. "Penetration Testing". O'Reilly Media. Retrieved 16 January 2014.
  2. "Penetration Testing: Assessing Your Overall Security Before Attackers Do". SANS Institute. Retrieved 16 January 2014.
  3. "Penetration test". Network Security Services. Retrieved 16 April 2012.
  4. "Corporate IT Security Courses". eLearnSecurity. 16 April 2012.
  5. Russell and Gangemi, Sr. (1991), p. 27
  6. Hunt (2012), pp. 7-8
  7. Hunt (2012), p. 8
  8. Hunt (2012), p. 8
  9. Yost (2007), p. 602
  10. Russell and Gangemi, Sr. (1991), p. 29
  11. MacKenzie (2001), p. 156
  12. Yost (2007), pp. 601-602
  13. Hunt (2012), p. 9
  14. Hunt (2012), p. 9
  15. Broad, William J. (September 25, 1983). "Computer Security Worries Military Experts", New York Times
  16. Hunt (2012), p. 5
  17. "CWAPT - CERTIFIED PENETRATION TESTER". IACRB. Retrieved 17 January 2012.
  18. Faircloth, Jeremy (2011). "1". Penetration Tester's Open Source Toolkit, Third Edition (Third ed.). Elsevier. ISBN 1597496278.[need quotation to verify]

References

External links

Penetration test的更多相关文章

  1. Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques

    Web Application Penetration Testing Local File Inclusion (LFI) Testing Techniques Jan 04, 2017, Vers ...

  2. Penetration Testing、Security Testing、Automation Testing

    相关学习资料 http://www.cnblogs.com/LittleHann/p/3823513.html http://www.cnblogs.com/LittleHann/p/3828927. ...

  3. penetration testers渗透测试,hack,vnc,nat,

    penetration testers渗透测试,hack,vnc,nat,

  4. 14 Live CDs for Penetration Testing (Pen Test) and Forensic

    http://www.ivizsecurity.com/blog/penetration-testing/live-cd-penetration-testing-pen/ Yesterday I wa ...

  5. Penetration testing _internal & wireless Penetration Testing

    第一部分 渗透测试步骤 ---参考资料  Ethical Hacking: The Value of Controlled Penetration Tests  下载地址  链接:https://pa ...

  6. kali linux revealed mastering the penetration testing distribution

    1.本博客记载的是这本书的学习笔记,还有出现的一些不懂的单词 我也将会记载这篇博客中.记载顺序是按照本书的章节顺序来记载的.最喜欢本书中的一句   you havae no idea how good ...

  7. Ethical Hacking - NETWORK PENETRATION TESTING(15)

    ARP Poisoning - arpspoof Arpspoof is a tool part of a suit called dsniff, which contains a number of ...

  8. PENETRATION第一步

    PENETRATION第一步 第一次去打靶机,本来都快成功了,电脑蓝屏警告了...(=_=) 靶机下载连接 (https://download.vulnhub.com/admx/AdmX_new.7z ...

  9. [Penetration Testing Devil Training Camp Based on Metasploit] Learn & Practice

随机推荐

  1. C#基础篇02

    首先:一个完整的方法是包括两部分的,代码和注释!!!! 程序的调试: 3:设置断点:  断点之前的程序已经确保正确,可是在断点后的部分可能出现错误,所以设置完断点后,直接点击启动,然后按F11逐步棸的 ...

  2. javascript进击(七)Ajax

    AJAX AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJA ...

  3. [Form Builer]Locking Mode and LOCK_RECORD

    Locking Mode Property Description Specifies when Oracle Forms tries to obtain database locks on rows ...

  4. Hibernate的fetch (转)

    fetch ,可以设置fetch = "select" 和 fetch = "join" 用一对多来举例: fetch = "select" ...

  5. ERROR 1114 (HY000): The table 'adv_date_tmp' is full(Mysql临时表应用)

    场景:需要对现在数据库的数据进行批量的进行is_del=1的操作,但是遇到一个问题,在执行sql的时候发现sql不能在查询特定表的时候再嵌套查询来做update的操作,经过讨论,后续我们想到用临时表的 ...

  6. bootstrap整理-1

    基本的HTML模板 小伙伴们,上一小节的视频课程已经对Bootstrap提供的模板做了详细的介绍,在这一小节中我们把这个模板代码粘贴过来,以供你们学习查看,你们可以根据实际情况在此基础上进行扩展,只需 ...

  7. GridView中使用如下button OnClientClick代码会出现解析错误

    在GridView中使用如下代码会出现解析错误: <asp:LinkButton ID="DeleteButton" runat="server" Cau ...

  8. Asp.Net静态资源动态压缩之WebOptimization

    一.Asp.Net中对Css/Js的动态压缩工具 WebOptimization 在Asp.NetMVC自带的模板项目中自动引入了当前WebOptimization工具.如果使用的空模板Nuget命令 ...

  9. SSIS结合BCP及SQL Server作业实现定时将数据导出打包实现数据同步

    首先这个流程要实现的功能大致是: 有两台服务器,一台是对外网开发的,一台是内网的.那么很明显数据交互都是外网服务器在做,而这个流程要做的就是要将外网上面的数据定时同步到内网中. 我们依对其中某张表的操 ...

  10. java web -部署在linux

    概述: 初次将java web项目部署到linux上, 还是很顺利的, 基本上没有什么错误. 步骤: 1, 安装jdk(官网中说了很清晰了),在linux上安装安装jdk, 不想windows那样, ...