Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8610   Accepted: 4147

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
题意:有n头牛,有些牛互相喜欢,他们想要离得越近越好,有的牛相互讨厌,他们想要离得越远越好,现在给你n头牛之间的关系,让你求出第一头牛与第n头之间的最小距离,当最小距离不存在,即存在负环时输出-1,当最短路为任意(即没有最短路,1到n之间不连通)时输出-2
输入:第一行输入三个数n,ML,MD,代表有n头牛,其中相互喜欢的有ML对,相互讨厌的有MD对,接下来ML行三个数a,b,c,代表a牛和b牛之间最多相隔 c 距离,接下来MD
行三个数a,b,c,代表a牛和b牛之间最少相隔 c 距离;
题解:根据题意找到约束条件,然后建图,由题意约束条件为:
一、相互喜欢的:b-a<=c    对应建边为add(a,b,c);
二、相互讨厌的:b-a>=c   ==>   a-b<=-c;    对应建边为add(b,a,-c);
#include<stdio.h>
#include<string.h>
#include<queue>
#define MAX 100000
#define INF 0x3f3f3f
using namespace std;
int head[MAX];
int n,m,s,ans;
int dis[MAX],vis[MAX];
int used[MAX];
struct node
{
int u,v,w;
int next;
}edge[MAX];
void add(int u,int v,int w)
{
edge[ans].u=u;
edge[ans].v=v;
edge[ans].w=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
memset(head,-1,sizeof(head));
}
void getmap()
{
int i,j;
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
while(s--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(b,a,-c);
}
}
void spfa(int sx)
{
int i,j;
queue<int>q;
memset(vis,0,sizeof(vis));
memset(used,0,sizeof(used));
for(i=1;i<=n;i++)
dis[i]=i==sx?0:INF;
vis[sx]=1;
used[sx]++;
q.push(sx);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int top=edge[i].v;
if(dis[top]>dis[u]+edge[i].w)
{
dis[top]=dis[u]+edge[i].w;
if(!vis[top])
{
vis[top]=1;
q.push(top);
used[top]++;
if(used[top]>n)
{
printf("-1\n");
return ;
}
}
}
}
}
if(dis[n]==INF)
printf("-2\n");
else
printf("%d\n",dis[n]);
}
int main()
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
init();
getmap();
spfa(1);
}
return 0;
}

  

 
 
 

poj 3169 Layout的更多相关文章

  1. poj 3169 Layout (差分约束)

    3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  5. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 题目大意:n头牛,按编号1~n从左往右排列,可以多头牛站在同一个点,给出ml行条件,每行三个数a b c表示dis[b]-dis ...

  6. POJ 3169 Layout (HDU 3592) 差分约束

    http://poj.org/problem?id=3169 http://acm.hdu.edu.cn/showproblem.php?pid=3592 题目大意: 一些母牛按序号排成一条直线.有两 ...

  7. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  8. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  9. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

随机推荐

  1. 关于vs2008使用oracleclient链接oracle数据库报报错OCIEnvCreate 失败,返回代码为 -1,但错误消息文本不可用

    用vs2008链接oracle数据库出现问题,报错OCIEnvCreate 失败,返回代码为 -1,但错误消息文本不可用,从网上找了好久方法,有两种oracle客户端文件权限,和运行vs2008以管理 ...

  2. 查看xcode的路径

    sudo /usr/libexec/locate.updatedb locate liblaunch_sim

  3. C# 基础 知识点

    类型 1.decimal为高精度浮点数,常用于货币计算,然后它不是基本类型,所以性能相对float和double要差. 2.@用于字符串前使转义字符 \  无效,甚至能将回车当作换行符直接赋值给字符串 ...

  4. Zend Studio 11.0.2 破解和汉化

    本方法适用于Zend Studio 11.0.2,亲测,其他版本未知. 破解方法:覆盖安装目录 plugins 里同名文件,启动任意输入即可注册. Windows版下载地址:http://downlo ...

  5. 帝国cms 灵动标签【列表页】调用当前父栏目下的所有子栏目

    <? $bclassid = $class_r[$GLOBALS[navclassid]][bclassid]; //获取当前父栏目ID ?> [e:loop={"select ...

  6. python【第十五篇】JavaScript

    大纲 1 简介 2 存在形式 3 放置位置 4 变量 5 注释 6 数据类型 7 时间处理 8 语句和异常 9 函数及其作用域 1.JS简介 JavaScript是世界上最流行的脚本语言,因为你在电脑 ...

  7. 学习Swift--属性

    属性 属性将值跟特定的类.结构或枚举关联.存储属性存储常量或变量作为实例的一部分,而计算属性计算(不是存储)一个值.计算属性可以用于类.结构体和枚举,存储属性只能用于类和结构体. 存储属性和计算属性通 ...

  8. 转:使用Tengine替代Nginx作为负载均衡服务器

    原文来自于:http://heylinux.com/archives/2938.html Tengine是由淘宝网发起的Web服务器项目.它在Nginx的基础上,针对大访问量网站的需求,添加了很多高级 ...

  9. [BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】

    题目链接:BZOJ - 1143 题目分析 这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题. 下面给出一些相关知识: 在有向无环图中,有如下的一些定义和性质: 链:一 ...

  10. iOS内存管理系列之二:自动释放与便捷方法

    有时候一个所有者创建一个对象后,会立刻将该对象的指针传递给其它所有者.这时,这个创建者不希望再拥有这个对象,但如果立刻给它发送一个release消息会导致这个对象被立刻释放掉——这样其它所有者还没有来 ...