11.1. Output Formatting 格式化输出

The repr module provides a version of repr() customized for abbreviated displays of large or deeply nested containers:

>>> import repr

>>> repr.repr(set('supercalifragilisticexpialidocious'))

"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"

The pprint module offers more sophisticated control over printing both built-in and user defined objects in a way that is readable by the interpreter. When the result is longer than one line, the "pretty printer" adds line breaks and indentation to more clearly reveal data structure:

>>> import pprint

>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',

... 'yellow'], 'blue']]]

...

>>> pprint.pprint(t, width=30)

[[[['black', 'cyan'],

'white',

['green', 'red']],

[['magenta', 'yellow'],

'blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that it returns

... a list of strings instead of one big string with newlines to separate

... the wrapped lines."""

...

>>> print textwrap.fill(doc, width=40)

The wrap() method is just like fill()

except that it returns a list of strings

instead of one big string with newlines

to separate the wrapped lines.

The locale module accesses a database of culture specific data formats. The grouping attribute of locale's format function provides a direct way of formatting numbers with group separators:

>>> import locale

>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')

'English_United States.1252'

>>> conv = locale.localeconv() # get a mapping of conventions

>>> x = 1234567.8

>>> locale.format("%d", x, grouping=True)

'1,234,567'

>>> locale.format_string("%s%.*f", (conv['currency_symbol'],

... conv['frac_digits'], x), grouping=True)

'$1,234,567.80'

11.2. Templating

The string module includes a versatile Template class with a simplified syntax suitable for editing by end-users. This allows users to customize their applications without having to alter the application.

The format uses placeholder names formed by $ with valid Python identifiers (alphanumeric characters and underscores). Surrounding the placeholder with braces allows it to be followed by more alphanumeric letters with no intervening spaces. Writing $$ creates a single escaped $:

>>> from string import Template

>>> t = Template('${village}folk send $$10 to $cause.')

>>> t.substitute(village='Nottingham', cause='the ditch fund')

'Nottinghamfolk send $10 to the ditch fund.'

The substitute() method raises a KeyError when a placeholder is not supplied in a dictionary or a keyword argument. For mail-merge style applications, user supplied data may be incomplete and the safe_substitute() method may be more appropriate — it will leave placeholders unchanged if data is missing:

>>> t = Template('Return the $item to $owner.')

>>> d = dict(item='unladen swallow')

>>> t.substitute(d)

Traceback (most recent call last):

...

KeyError: 'owner'

>>> t.safe_substitute(d)

'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch renaming utility for a photo browser may elect to use percent signs for placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path

>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']

>>> class BatchRename(Template):

... delimiter = '%'

>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')

Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)

>>> date = time.strftime('%d%b%y')

>>> for i, filename in enumerate(photofiles):

... base, ext = os.path.splitext(filename)

... newname = t.substitute(d=date, n=i, f=ext)

... print '{0} --> {1}'.format(filename, newname)

img_1074.jpg --> Ashley_0.jpg

img_1076.jpg --> Ashley_1.jpg

img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details of multiple output formats. This makes it possible to substitute custom templates for XML files, plain text reports, and HTML web reports.

11.3. Working with Binary Data Record Layouts

The struct module provides pack() and unpack() functions for working with variable length binary record formats. The following example shows how to loop through header information in a ZIP file without using the zipfile module. Pack codes "H" and "I" represent two and four byte unsigned numbers respectively. The "<" indicates that they are standard size and in little-endian byte order:

import struct

data = open('myfile.zip', 'rb').read()

start = 0

for i in range(3): # show the first 3 file headers

start += 14

fields = struct.unpack('<IIIHH', data[start:start+16])

crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

11.4. Multi-threading

Threading is a technique for decoupling tasks which are not sequentially dependent. Threads can be used to improve the responsiveness of applications that accept user input while other tasks run in the background. A related use case is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run tasks in background while the main program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):

def __init__(self, infile, outfile):

threading.Thread.__init__(self)

self.infile = infile

self.outfile = outfile

def run(self):

f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)

f.write(self.infile)

f.close()

print 'Finished background zip of: ', self.infile

background = AsyncZip('mydata.txt', 'myarchive.zip')

background.start()

print 'The main program continues to run in foreground.'

background.join() # Wait for the background task to finish

print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads that share data or other resources. To that end, the threading module provides a number of synchronization primitives including locks, events, condition variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the preferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue module to feed that thread with requests from other threads. Applications using Queue.Queue objects for inter-thread communication and coordination are easier to design, more readable, and more reliable.

11.5. Logging

The logging module offers a full featured and flexible logging system. At its simplest, log messages are sent to a file or to sys.stderr:

import logging

logging.debug('Debugging information')

logging.info('Informational message')

logging.warning('Warning:config file %s not found', 'server.conf')

logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found

ERROR:root:Error occurred

CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output is sent to standard error. Other output options include routing messages through email, datagrams, sockets, or to an HTTP Server. New filters can select different routing based on message priority: DEBUG, INFO, WARNING, ERROR, and CRITICAL.

The logging system can be configured directly from Python or can be loaded from a user editable configuration file for customized logging without altering the application.

11.6. Weak References

Python does automatic memory management (reference counting for most objects and garbage collection to eliminate cycles). The memory is freed shortly after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need to track objects only as long as they are being used by something else. Unfortunately, just tracking them creates a reference that makes them permanent. The weakref module provides tools for tracking objects without creating a reference. When the object is no longer needed, it is automatically removed from a weakref table and a callback is triggered for weakref objects. Typical applications include caching objects that are expensive to create:

>>> import weakref, gc

>>> class A:

... def __init__(self, value):

... self.value = value

... def __repr__(self):

... return str(self.value)

...

>>> a = A(10) # create a reference

>>> d = weakref.WeakValueDictionary()

>>> d['primary'] = a # does not create a reference

>>> d['primary'] # fetch the object if it is still alive

10

>>> del a # remove the one reference

>>> gc.collect() # run garbage collection right away

0

>>> d['primary'] # entry was automatically removed

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

d['primary'] # entry was automatically removed

File "C:/python26/lib/weakref.py", line 46, in __getitem__

o = self.data[key]()

KeyError: 'primary'

11.7. Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However, sometimes there is a need for alternative implementations with different performance trade-offs.

The array module provides an array() object that is like a list that stores only homogeneous data and stores it more compactly. The following example shows an array of numbers stored as two byte unsigned binary numbers (typecode "H") rather than the usual 16 bytes per entry for regular lists of Python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])

>>> sum(a)

26932

>>> a[1:3]

array('H', [10, 700])

The collections module provides a deque() object that is like a list with faster appends and pops from the left side but slower lookups in the middle. These objects are well suited for implementing queues and breadth first tree searches:

>>> from collections import deque

>>> d = deque(["task1", "task2", "task3"])

>>> d.append("task4")

>>> print "Handling", d.popleft()

Handling task1

unsearched = deque([starting_node])

def breadth_first_search(unsearched):

node = unsearched.popleft()

for m in gen_moves(node):

if is_goal(m):

return m

unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools such as the bisect module with functions for manipulating sorted lists:

>>> import bisect

>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]

>>> bisect.insort(scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

The heapq module provides functions for implementing heaps based on regular lists. The lowest valued entry is always kept at position zero. This is useful for applications which repeatedly access the smallest element but do not want to run a full list sort:

>>> from heapq import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list into heap order

>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three smallest entries

[-5, 0, 1]

11.8. Decimal Floating Point Arithmetic

The decimal module offers a Decimal datatype for decimal floating point arithmetic. Compared to the built-in float implementation of binary floating point, the class is especially helpful for

  • financial applications and other uses which require exact decimal representation,
  • control over precision,
  • control over rounding to meet legal or regulatory requirements,
  • tracking of significant decimal places, or
  • applications where the user expects the results to match calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different results in decimal floating point and binary floating point. The difference becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *

>>> x = Decimal('0.70') * Decimal('1.05')

>>> x

Decimal('0.7350')

>>> x.quantize(Decimal('0.01')) # round to nearest cent

Decimal('0.74')

>>> round(.70 * 1.05, 2) # same calculation with floats

0.73

The Decimal result keeps a trailing zero, automatically inferring four place significance from multiplicands with two place significance. Decimal reproduces mathematics as done by hand and avoids issues that can arise when binary floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations and equality tests that are unsuitable for binary floating point:

>>> Decimal('1.00') % Decimal('.10')

Decimal('0.00')

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0')

True

>>> sum([0.1]*10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36

>>> Decimal(1) / Decimal(7)

Decimal('0.142857142857142857142857142857142857')

Python Tutorial学习(十一)-- Brief Tour of the Standard Library – Part II的更多相关文章

  1. Python Tutorial 学习(十)-- Brief Tour of the Standard Library

    10.1. Operating System Interface os库 import os os.getcwd() # Return the current working directory 'C ...

  2. [译]The Python Tutorial#11. Brief Tour of the Standard Library — Part II

    [译]The Python Tutorial#Brief Tour of the Standard Library - Part II 第二部分介绍更多满足专业编程需求的高级模块,这些模块在小型脚本中 ...

  3. Python Tutorial 学习(八)--Errors and Exceptions

    Python Tutorial 学习(八)--Errors and Exceptions恢复 Errors and Exceptions 错误与异常 此前,我们还没有开始着眼于错误信息.不过如果你是一 ...

  4. [译]The Python Tutorial#10. Brief Tour of the Standard Library

    [译]The Python Tutorial#Brief Tour of the Standard Library 10.1 Operating System Interface os模块为与操作系统 ...

  5. Python Tutorial 学习(六)--Modules

    6. Modules 当你退出Python的shell模式然后又重新进入的时候,之前定义的变量,函数等都会没有了. 因此, 推荐的做法是将这些东西写入文件,并在适当的时候调用获取他们. 这就是为人所知 ...

  6. C++学习书籍推荐《The C++ Standard Library 2nd》下载

    百度云及其他网盘下载地址:点我 编辑推荐 经典C++教程十年新版再现,众多C++高手和读者好评如潮 畅销全球.经久不衰的C++ STL鸿篇巨著 C++程序员案头必 备的STL参考手册 全面涵盖C++1 ...

  7. Python Tutorial 学习(四)--More Control Flow Tools

    4.1 if 表达式 作为最为人熟知的if.你肯定对这样的一些表达式不感到陌生: >>> x = int(raw_input("Please enter an intege ...

  8. Python Tutorial 学习(一)--Whetting Your Appetite

    Whetting Your Appetite [吊你的胃口]... 这里就直接原文奉上了... If you do much work on computers, eventually you fin ...

  9. Python Tutorial 学习(九)--Classes

    ## 9. Classes 类 Compared with other programming languages, Python's class mechanism adds classes wit ...

随机推荐

  1. Webform Repeater的灵活运用

    案例:模拟购物列表 封装实体类:   数据访问类: 用Repeater展示: 1 <%@ Page Language="C#" AutoEventWireup="t ...

  2. php-mysql结果集函数比较

    本节主要介绍了获取查询结果集的4个函数,此处对它们进行综合比较.     ● mysql_result():优点在于使用方便:而缺点在于功能少,一次调用只能获取结果数据集中的一行记录,对较大型的数据库 ...

  3. Linux 上不可修改的文件和目录

         有时候我们需要让一个我们自己的目录中的内容不能变动,也就是不允许其他人随便删改我们的目录和目录中的文件.这里,首先,我们需要知道两个概念,文件的粘滞位和属性.       文件如果设置了粘滞 ...

  4. MyEclipse10搭建Strust2开发环境

    一.创建一个JavaWeb项目 启动MyEclipse10    ,然后在MyEclipse中创建一个JavaWeb项目,点击[File]---->[New]---->[WebProjec ...

  5. OGG-01224 Bad file number

    今天在看OGG的日志时.发现例如以下OGG-01224 Bad file number错误.查阅资料才知道port不可用,看了一下mgr的參数,发现是设置的DYNAMICPORTLIST 动态port ...

  6. Activiti5.16.4数据库表结构

    一.ACTIVITI 数据库E-R图(5.16.4) Activiti 5.16.4 总共有24张表,增加act_evt_log(事件日志),以及增加了对SasS的支持. 在流程定义.运行实例和历史的 ...

  7. 在Eclipse上搭建Cocos2d-x的Android开发环境

    很多其它相关内容请查看本人博客:http://www.bokeyi.com/ll/category/cocos2d-x/ 本文的搭建方法是最新最正确的方法,好多朋友反映搭建eclipse交叉编译环境非 ...

  8. mybatis0201 01复习

    mybatis是什么? mybatis是一个持久层框架,是apache下的开源项目,前身是itbatis,是一个不完全的ORM框架(因为mybatis提供输入和输出的映射,需要程序员自己写sql语句) ...

  9. pip安装 MySQLDb 和 Django

    wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=834b2904f92d46aaa33326 ...

  10. 2014-08-05 pig

    Pig的数据类型能够分为两种:一种是scalar类型,包含单一的value,一种是complex类型,包含有其他的类型. 对于scalar类型: int,long,float,double,chara ...