题目地址:http://poj.org/problem?id=1184

题目意思:

给你两个6位数,一个是起始值,一个最终值

初始光标在最左边

你可以左移或者右移光变

在光标处+1或者-1

在光标处和最左边或者和最右边交换

问你最少要多少就可以由初始值转换到最终值

解题思路:

操作分离是解决这题的核心思想

就是说我们反正要进行一些转换的,不如先全部转换了算了

通过一个BFS预处理将所有可能转换的全部转换,光标所有可能的位置全部求出来

然后在每次要求的时候,对每种状态上的光标进行加减操作

求出最少的步骤

另外这题的测试数据有问题,其实左移也是需要的

比如000159 和 000519,正确答案是8,如果不考虑左移就是12

再就是我们可以将光标的访问情况压缩到10种,具体的在我代码中有解释

下面上代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<map>
#include<queue>
using namespace std; struct node
{
int state;
int pos;
int num[6];
int step;
int fangwen[6];
}; int vis_state[10][6] =
{
1,0,0,0,0,0, /*访问状态0: 初始状态(pos=0)*/
1,1,0,0,0,0, /*访问状态1: 状态0通过右移操作得到(pos=1),或者状态1通过swap0操作得到(pos=1)*/
1,1,1,0,0,0, /*访问状态2: 状态1通过右移操作得到(pos=2),或者状态2通过swap0操作得到(pos=2)*/
1,1,1,1,0,0, /*访问状态3: 状态2通过右移操作得到(pos=3),或者状态3通过swap0操作得到(pos=3)*/
1,1,1,1,1,0, /*访问状态4: 状态3通过右移操作得到(pos=4),或者状态4通过swap0操作得到(pos=4)*/
1,0,0,0,0,1, /*访问状态5: 状态0通过swap1操作得到(pos=0),或者状态5通过swap0操作得到(pos=0)*/
1,1,0,0,0,1, /*访问状态6: 状态1通过swap1操作得到(pos=1),或者状态5通过右移操作得到(pos=1),或者状态6通过swap0操作得到(pos=1)*/
1,1,1,0,0,1, /*访问状态7: 状态2通过swap1操作得到(pos=2),或者状态6通过右移操作得到(pos=2),或者状态7通过swap0操作得到(pos=2)*/
1,1,1,1,0,1, /*访问状态8: 状态3通过swap1操作得到(pos=3),或者状态7通过右移操作得到(pos=3),或者状态8通过swap0操作得到(pos=3)*/
1,1,1,1,1,1 /*访问状态9: 状态4通过swap1操作得到(pos=4),或者状态8通过右移操作得到(pos=4),或者状态9通过右移操作得到(pos=5),
或者状态4通过右移操作得到(pos=5),或者状态9通过swap0操作得到,或者状态9通过swap1操作得到*/
}; int state[10000][8]; //对应的是所有情况,第二维记录相应信息 int idx;
int co; bool vis[6][6][6][6][6][6][6][10]; //前6个是数字,为什么只到6,是因为这个是做排列用的
//第7个是光标所在位置用的,第8个事state void put_to_vis(node a)
{
vis[a.num[0]][a.num[1]][a.num[2]][a.num[3]][a.num[4]][a.num[5]][a.pos][a.state] = true;
} bool check(node a)
{
return vis[a.num[0]][a.num[1]][a.num[2]][a.num[3]][a.num[4]][a.num[5]][a.pos][a.state];
} int find_state(node a)
{
if(a.fangwen[5]==0)
{
int cnt = 0;
for(int i=1;i<5;i++)
if(a.fangwen[i])
cnt++;
return cnt;
}
else
{
int cnt = 0;
for(int i=1;i<5;i++)
if(a.fangwen[i])
cnt++;
return cnt+5;
}
} void bfs()
{
queue<node> Q;
node a,b;
idx=0;
co=0;
for(int i=0;i<6;i++)
{
a.num[i] = i;
a.fangwen[i] = 0;
} a.pos = a.state = a.step = 0;
a.fangwen[0] = 1;
Q.push(a);
put_to_vis(a); //printf("a step %d\n",a.step);
int co2=0; while(!Q.empty())
{
co++;
a = Q.front();
Q.pop(); for(int i=0;i<6;i++)
state[idx][i] = a.num[i];
state[idx][6] = a.state;
state[idx][7] = a.step;
idx++; if(a.pos>0) //左移或者左交换操作
{
//左移操作
b=a;
b.step = a.step+1;
b.pos--;
if(!check(b))
{
put_to_vis(b);
Q.push(b);
} //左交换
b = a;
b.step = a.step+1;
swap(b.num[0],b.num[b.pos]);
if(!check(b))
{
put_to_vis(b);
Q.push(b);
}
} if(a.pos<5) //右移和右交换操作
{
//右移
b=a;
b.step = a.step+1;
b.pos++;
b.fangwen[b.pos] = 1;
b.state = find_state(b);
if(!check(b))
{
put_to_vis(b);
Q.push(b);
} //右交换
b = a ;
b.step = a.step+1;
swap(b.num[5],b.num[b.pos]);
b.fangwen[5] = 1;
b.state = find_state(b);
if(!check(b))
{
put_to_vis(b);
Q.push(b);
}
}
}
} int main()
{
memset(vis,false,sizeof(vis));
bfs();
char st[10];
char ed[10];
int _st[6];
int _ed[6];
while(scanf("%s%s",st,ed) != EOF)
{
for(int i=0;i<6;i++)
{
_st[i] = st[i]-'0';
_ed[i] = ed[i]-'0';
} int ans = 99999999; for(int i=0;i<idx;i++)
{
int tmp = state[i][7];//初始化为进行了交换后的步数
bool flag = true;
int j;
for(j=0;j<6;j++)
{
if(!vis_state[state[i][6]][j] && (_st[state[i][j]]!=_ed[j]) )
{
flag = false;
break;
}
else
{
tmp += abs( _st[state[i][j]] - _ed[j]); //再加上每位进行加减 操作的步数
}
} if(flag)
ans = min(ans,tmp); }
printf("%d\n",ans);
}
return 0;
}

POJ1184-------操作分离的BFS的更多相关文章

  1. 基于ASP.NET Core 3.x的端点路由(Endpoint Routing)实现控制器(Controller)和操作(Action)分离的接口服务

    本文首发于 码友网 -- <基于ASP.NET Core 3.x的端点路由(Endpoint Routing)实现控制器(Controller)和操作(Action)分离的接口服务> 前言 ...

  2. SQL Server读写分离实现方案简介

    读写分离是中型规模应用的数据库系统常见设计方案,通过将数据从主服务器同步到其他从服务器,提供非实时的查询功能,扩展性能并提高并发性. 数据库的读写分离的好处如下: 通过将“读”操作和“写”操作分离到不 ...

  3. Sicily 1048: Inverso(BFS)

    题意是给出一个3*3的黑白网格,每点击其中一格就会使某些格子的颜色发生转变,求达到目标状态网格的操作.可用BFS搜索解答,用vector储存每次的操作 #include<bits/stdc++. ...

  4. Sicily 1444: Prime Path(BFS)

    题意为给出两个四位素数A.B,每次只能对A的某一位数字进行修改,使它成为另一个四位的素数,问最少经过多少操作,能使A变到B.可以直接进行BFS搜索 #include<bits/stdc++.h& ...

  5. 读写分离提高 SQL Server 并发性能

    以下内容均非原创,仅作学习.分享!! 在 一些大型的网站或者应用中,单台的SQL Server 服务器可能难以支撑非常大的访问压力.很多人在这时候,第一个想到的就是一个解决性能问题的利器——负载均衡. ...

  6. POJ 3414 Pots【bfs模拟倒水问题】

    链接: http://poj.org/problem?id=3414 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22009#probl ...

  7. win7+SQL2008无法打开物理文件 操作系统错误 5:拒绝访问 SQL Sever

    今天在win7+SQL2008的环境下操作分离附加数据库,分离出去然后再附加,没有问题.但是一把.mdf文件拷到其它文件夹下就出错,错误如下:无法打开物理文件 "E:\db\MyDB.mdf ...

  8. SQL server 分离数据库与删除数据库的区别

    今天,在sql server 中,分离数据库,然后就问了一下,与删除数据库的区别 区别在于(百度一下): 分离后,.mdb和.log文件都在,以后你需要用的时候,还可以用附加数据库的方法加上去,分离数 ...

  9. hdu 5652 India and China Origins 二分+bfs

    题目链接 给一个图, 由01组成, 1不能走. 给q个操作, 每个操作将一个点变为1, 问至少多少个操作之后, 图的上方和下方不联通. 二分操作, 然后bfs判联通就好了. #include < ...

随机推荐

  1. in_array 判断问题的疑惑解决。

    面试题中有一条是关于in_array判断的,题目如下: 如何大家没有深入了解in_array的类型判断过程,而是根据经验来选择,肯定很多人也是是选择了D答案的,具体的原因我也是从牛人的博客里面得到答案 ...

  2. for语句嵌套使用 实现9*9乘法表

         这个实例主要考察对for循环语句的使用,出现递增规律的乘法表. 开发环境      开发工具:Microsoft Visual Studio2010 旗舰版 具体步骤      先是制作一个 ...

  3. 检测js代码是否已加载的判断代码

    该方法不局限于jQuery的检测,对与任何Javascript变量或函数都是通用的. 当前网页加载jQuery后,jQuery()或$()函数将会被定义,所以检测jQuery是否已经加载存在以下2种方 ...

  4. WEB可用性、可访问性、可维护性

    可用性 (Usability) 可用性是一个多因素概念,涉及到容易学习.容易使用.系统的有效性.用户满意度,以及把这些因素与实际使用环境联系在一起针对特定目标的评价. 可访问性 (Accessibil ...

  5. Python Tutorial 学习(七)--Input and Output

    7. Input and Output Python里面有多种方式展示程序的输出.或是用便于人阅读的方式打印出来,或是存储到文件中以便将来使用.... 本章将对这些方法予以讨论. 两种将其他类型的值转 ...

  6. STM32学习笔记——DMA控制器(向原子哥学习)

    一.DMA简介 DMA,全称为:Direct Memory Access,即直接存储器访问,DMA 用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输.当 CPU 初始化这个传输动作,传输 ...

  7. 项目知识点.Part1

    1. storyboard中添加scrollview: 先添加scrollView,进行约束 添加View 进行约束 相对于scrollView 如果水平滑动:设置vertically in Cont ...

  8. C++实现base64编码(1)

    下面的代码是php里面的base64编码逻辑,确实比我之前的要美观很多,我只是简单的用C++的类进行了一下封装,删除了一些没用的逻辑,基本上还是原来PHP的代码: #include <iostr ...

  9. hiho一下103周 平衡树·Treap

    平衡树·Treap 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:小Hi,我发现我们以前讲过的两个数据结构特别相似. 小Hi:你说的是哪两个啊? 小Ho:就是二 ...

  10. c++ 顺序容器学习 - 容器适配器

    摘要: 对 容器适配器 的疑问. 刚开始接触 容器适配器 时,总感觉怪怪的,认为多此一举,顺手搜了搜,原来我在这一点is not alone: STL容器适配器的用途 其中有个老兄说的好,这里 引用一 ...