Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11435   Accepted: 3040

Description

The young and very promising cryptographer Odd Even has implemented the security module of a large system with thousands of users, which is now in use in his company. The cryptographic keys are created from the product of two primes, and are believed to be secure because there is no known method for factoring such a product effectively. 
What Odd Even did not think of, was that both factors in a key should be large, not just their product. It is now possible that some of the users of the system have weak keys. In a desperate attempt not to be fired, Odd Even secretly goes through all the users keys, to check if they are strong enough. He uses his very poweful Atari, and is especially careful when checking his boss' key.

Input

The input consists of no more than 20 test cases. Each test case is a line with the integers 4 <= K <= 10100 and 2 <= L <= 106. K is the key itself, a product of two primes. L is the wanted minimum size of the factors in the key. The input set is terminated by a case where K = 0 and L = 0.

Output

For each number K, if one of its factors are strictly less than the required L, your program should output "BAD p", where p is the smallest factor in K. Otherwise, it should output "GOOD". Cases should be separated by a line-break.

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31 题意:k是两个素数的乘积,但k是一个大数,若两个素数中最小的素数不小于l输出“GOOD",否则输出"BAD"和最小的素数;
思路:高精度取模:例如k是“1234567”,转化为千进制后,在kt数组里的形式为kt[1][234][567],在程序里的形式是kt[567][234][1],即整体逆序,局部有序;
   同余模定理:如kt[567][234][1]对100取模,
          1%100= 1;
          (1*1000+234)%100 = 34;
          (34*1000+567)%100 = 67;
          67!=0,所以原来的k不能被100整除;
 #include<stdio.h>
#include<string.h>
const int MAX = ;
int prime[MAX];
char k[];
int l;
int kt[];//将k转化成千进制数存到kt数组里; //素数筛;
void prime_table()
{
int pnum = ,i,j;
prime[pnum++] = ; for(i= ; i <= MAX; i+=)
{
bool flag = true;
for(j = ; prime[j]*prime[j] <= i; j++)
{
if(!(i%prime[j]))
{
flag = false;
break;
}
}
if(flag)
prime[pnum++] = i;
}
} //判断k能否被prime整除,同余模定理;
bool check(int kt[],int prime,int len)
{
int i;
int t = ;
for(i = len-; i >= ; i--)
t = (t*+kt[i])%prime;
if(t)
return false;
return true;
} int main()
{
int i,cnt;
prime_table();
while(~scanf("%s %d",k,&l))
{
if(k[] == '' && l == )
break;
memset(kt,,sizeof(kt)); int lenk = strlen(k); for(i = ; i < lenk; i++)
{
cnt = (lenk+-i)/-;
kt[cnt] = kt[cnt]*+(k[i]-'');
}//将k转化为千进制数,如“1234567”被转化为kt[567][234][1];
int lenkt = (lenk+)/;//kt数组的长度; bool flag = true;
int pnum = ;
while(prime[pnum] < l)
{
if(check(kt,prime[pnum],lenkt))
{
printf("BAD %d\n",prime[pnum]);
flag = false;
break;
}
pnum++;
}
if(flag)
printf("GOOD\n");
}
return ;
}
          


												

The Embarrassed Cryptographer(高精度取模+同余模定理)的更多相关文章

  1. 【阔别许久的博】【我要开始攻数学和几何啦】【高精度取模+同余模定理,*】POJ 2365 The Embarrassed Cryptographer

    题意:给出一大数K(4 <= K <= 10^100)与一整数L(2 <= L <= 106),K为两个素数的乘积(The cryptographic keys are cre ...

  2. POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)

    The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...

  3. (POJ2635)The Embarrassed Cryptographer(大数取模)

    The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...

  4. HDU-2303 The Embarrassed Cryptographer 高精度算法(大数取模)

    题目链接:https://cn.vjudge.net/problem/HDU-2303 题意 给一个大数K,和一个整数L,其中K是两个素数的乘积 问K的是否存在小于L的素数因子 思路 枚举素数,大数取 ...

  5. 组合数取模Lucas定理及快速幂取模

    组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...

  6. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  7. [转]组合数取模 Lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  8. poj2635(千进制取模+同余模定理)

    题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...

  9. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

随机推荐

  1. [转] Scale-up 和Scale-out的区别

    http://www.cnblogs.com/spork/archive/2009/12/29/1634766.html 来自原小站,曾经迷糊过的东西,表上来,希望对正在迷糊或即将迷糊的人有帮助. 谈 ...

  2. UITableView学习总结

    一.UITableView概述 UITableView继承自UIScrollView,可以表现为Plain和Grouped两种风格. UITableView有两个Delegate分别为:dataSou ...

  3. ubuntu下git clone 出现Permission denied (publickey).

    今天在ubuntu上使用git 克隆 github上面的库,一直权限拒绝Permission denied (publickey). 公钥绑了好几次,都不行: 最后怀疑是git配置公钥地址有问题:打开 ...

  4. IE兼容问题

    1.IE下event事件没有target属性,只有srcElement属性,解决方法:使用srcObj = event.srcElement ? event.srcElement : event.ta ...

  5. 委托、 Lambda表达式和事件——事件

    /* * 由SharpDevelop创建. * 用户: David Huang * 日期: 2015/7/31 * 时间: 14:21 */ using System; namespace 事件 { ...

  6. HTML5 <Audio/>标签Api整理(二)

    1.实例2: 相对较完整 Html代码: <style> #volumeSlider .slider-selection { background:#bababa; } </styl ...

  7. myEclipse修改deploy location

  8. 手势交互之GestureDetector

    GsetureDetector 一.交互过程 触屏的一刹那,触发MotionEvent事件 被OnTouchListener监听,在onTouch()中获得MotionEvent对象 GestureD ...

  9. iOS中ARC内部原理

    ARC会自动插入retain和release语句.ARC编译器有两部分,分别是前端编译器和优化器. 1. 前端编译器 前端编译器会为“拥有的”每一个对象插入相应的release语句.如果对象的所有权修 ...

  10. Mac开机黑屏解决办法

    开机黑屏问题 *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !import ...