(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)
题目:
Lifting the Stone |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 168 Accepted Submission(s): 98 |
Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.
|
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.
|
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway.
|
Sample Input
|
Sample Output
|
Source
Central Europe 1999
|
Recommend
Eddy
|
题目分析:
求凸多边形的重心,简单题。
1、 累加和求重心
设平面上有N 个离散数据点( xi , yi ) ( i = 1, 2, ., n) , 其
多边形重心G( . x1, . y1) 为:
这是求多边形最简单直观的方法。能够直接利用离散数
据点的x, y坐标就能求图形重心。
可是缺陷在于没有对离散
数据点所围图形做不论什么处理和分析,精度不够。
2、 算法一:在讲该算法时,先要明确以下几个定理。
定理1 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。它的重心坐标为:
xg = (x1+x2+x3) / 3 ; yg = (y1+y2+y3) / 3 ;
定理2 已知三角形△A1A2A3的顶点坐标Ai ( xi , yi ) ( i =1, 2, 3) 。
该三角形的面积为:
S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ;
△A1A2A3 边界构成逆时针回路时取+ , 顺时针时取 -。
另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
原理:将多边形划分成n个小区域, 每一个小区域面积为σi ,重心为Gi ( . xi , . yi ) ,利用求平面薄板重心公式把积分变
成累加和:
由前面所提出的原理和数学定理能够得出求离散数据点所围多边形的一般重心公式:以Ai ( xi , yi ) ( i = 1, 2, ., n) 为顶点的随意N边形A1A2 .An ,将它划 分成N - 2个三角形(如图1) 。每一个三角形的重心为Gi ( . xi , . yi ) ,面积为σi。那么多边形的重心坐标G( .x2, .y2) 为:
图1 多边形分解
代码例如以下:
- #include <iostream>
- #include <cstdio>
- using namespace std;
- const int maxn = 1000001;
- struct PPoint {
- double x, y;
- };
- double Area(PPoint p0, PPoint p1, PPoint p2) {
- double area = 0;
- area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y
- - p0.x * p2.y;
- return area / 2; // 另外在求解的过程中,不须要考虑点的输入顺序是顺时针还是逆时针。相除后就抵消了。
- }
- int main(){
- int t;
- scanf("%d",&t);
- while(t--){
- int n;
- scanf("%d",&n);
- PPoint p0,p1,p2;
- scanf("%lf %lf",&p0.x,&p0.y);
- scanf("%lf %lf",&p1.x,&p1.y);
- double sum_area = 0;
- double sum_x = 0;
- double sum_y = 0;
- int i;
- for(i = 2 ; i < n ; ++i){
- scanf("%lf %lf",&p2.x,&p2.y);
- double area = Area(p0,p1,p2);
- sum_area += area;
- sum_x += (p0.x + p1.x+ p2.x)*area;
- sum_y += (p0.y + p1.y + p2.y)*area;
- p1 = p2;
- }
- printf("%.2lf %.2lf\n",sum_x/(sum_area*3),sum_y/(sum_area*3));
- }
- return 0;
- }
(hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)的更多相关文章
- Lifting the Stone(hdu1115)多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- POJ 1385 Lifting the Stone (多边形的重心)
Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...
- HDU1115--Lifting the Stone(求凸多边形的重心)
Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...
- hdu 2036:改革春风吹满地(叉积求凸多边形面积)
改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone 多边形的重心
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone (数学几何)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1115 Lifting the Stone
题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...
- poj 1115 Lifting the Stone 计算多边形的中心
Lifting the Stone Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- Craig可能是个冲浪爱好者
最近有个叫Dweeb的Mac管理员,在他的blog中声称发现,主管OS X和iOS等软件产品的苹果资深副总裁Craig是一个冲浪爱好者.他通过对6月10日的苹果WWDC发布会视频的研究,指出Craig ...
- TPL异步并行编程之任务超时
此处参考自阿涛的博文:http://www.cnblogs.com/HelloMyWorld/p/5526914.html 一 自己定义 基本的思路: net中异步操作由于是交给线程来实现,因此不可能 ...
- spring异常记录-----java.lang.NoClassDefFoundError: org/apache/commons/lang3/StringUtils
今天在练习怎样SSH中进行单元測试的时候出现下列异常: SEVERE: Exception starting filter Struts2 java.lang.NoClassDefFoundError ...
- csdn发博文验证码缺陷
csdn验证码的长处: 一,差点儿没有浪费人脑人力,却要花去机器人非常多cpu csdn发博文验证码却有非常大缺陷: 一.验证码的内容终于结果是简单的数字,能够穷举尽的,也就是说不怕被封号的话全然能够 ...
- NoSql 数据库
几款主流 NoSql 数据库的对比 posted @ 2016-05-11 21:36 vajoy 阅读(915) 评论(3) 编辑 收藏 最近小组准备启动一个 node 开源项目,从前端亲和力. ...
- C++中的#pragma 预处理指令详解
源地址:http://blog.csdn.net/roger_77/article/details/660311 在所有的预处理指令中,#pragma 指令可能是最复杂的了,它的作用是设定编译器的状态 ...
- SPOJ DISUBSTR(字符串hash)
传送门:DISUBSTR 题意:给定一个字符串,求不同子串个数. 分析:由于数据较小,直接枚举长度为1,2...n的所有子串进行hash即可,复杂度(O(n^2)),后缀数组才是正解(O(nlogn) ...
- Enable OWIN Cross-origin Request
微软出了一套解决方式能够解决 "同意WebAPI的 CORS 请求" http://www.asp.net/web-api/overview/security/enabling-c ...
- Tomcat在Linux上安装
1. 下载并 安装 tomcat wget http://mirror.bit.edu.cn/apache/tomcat/tomcat-8/v8.0.14/bin/apache-tomcat-8.0 ...
- g++编C++11/C++0x遇到的问题
在看<Cplusplus Concurrency In Action Practical Multithreading>当遇到第一个样品: #include<iostream> ...