hihocoder第41周 骨牌覆盖(矩阵快速幂)
由于棋盘只有两行,所以如果第i列的骨牌竖着放,那么就转移为第1列到第i-1列骨牌有多少种摆法
如果第一行第i列骨牌横着放,那么第二行第i列也要横着放,那么就转移为了第1列到第i-2列骨牌有多少种方法
dp[i] = dp[i-1] + dp[i-2],但是列数太多了。 这种递推的算式可以用矩阵快速幂来优化
所以时间复杂度瞬间变为O(logn)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
typedef long long LL;
const int INF = <<;
LL ans;
const int MOD = ;
//矩阵快速幂 a[i] = a[i-1] + a[i-2] struct Matrix
{
LL m[][];
};
Matrix operator*(const Matrix &lhs, const Matrix &rhs)
{
Matrix ret;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
ret.m[i][j] = ;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
for(int k=; k<; ++k)
if(lhs.m[i][k]!= && rhs.m[k][j]!=)
ret.m[i][j] = (ret.m[i][j] + lhs.m[i][k] * rhs.m[k][j])%MOD; return ret;
}
Matrix operator^(Matrix a, int k)
{
Matrix ret;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
ret.m[i][j] = ;
ret.m[][] = ;
while(k)
{
if(k&)
ret = ret * a;
k>>=;
a = a * a;
}
return ret;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
Matrix tmp;
for(int i=; i<; ++i)
for(int j=; j<; ++j)
tmp.m[i][j] = ;
tmp.m[][] = ;
Matrix final = tmp ^ (n-);
LL ans = ( * final.m[][] + * final.m[][])%MOD;
printf("%lld\n",ans);
}
return ;
}
hihocoder第41周 骨牌覆盖(矩阵快速幂)的更多相关文章
- hihoCoder#1743:K-偏差排列(矩阵快速幂+状压dp)
题意 如果一个 \(1\to N\) 的排列 \(P=[P_1, P_2, ... P_N]\) 中的任意元素 \(P_i\) 都满足 \(|P_i-i| ≤ K\) ,我们就称 \(P\) 是 \( ...
- poj 3420 Quad Tiling (状压dp+多米诺骨牌问题+矩阵快速幂)
还有这种操作?????? 直接用pre到now转移的方式构造一个矩阵就好了. 二进制长度为m,就构造一个长度为1 << m的矩阵 最后输出ans[(1 << m) - 1][( ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- hihoCoder #1151 : 骨牌覆盖问题·二 (矩阵快速幂,DP)
题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次, ...
- (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)
[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...
- Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...
随机推荐
- error: /usr/include/stdio.h: Permission denied 的一种情况分析
error: /usr/include/stdio.h: Permission denied 的一种情况分析 代码: #include <stdio.h> int main(){ prin ...
- [置顶] head first 设计模式之----Observer pattern
浅谈设计模式之----观察者模式 观察者模式也是我们日常程序编写中碰到比较多的一种设计模式.首先,所谓观察者模式定义就是指:在对象之间定义了一对多的依赖,这样一来,当一个对象的状态发生变化的 ...
- CF 327D - Block Tower 数学题 DFS 初看很难,想通了就感觉很简单
D. Block Tower time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- dsplib使用备忘
1. 到TI官网下载与自己的芯片对应的dsplib库 2. 在工程属性里添加dsplib的头文件路径,lib库路径 3. 在源文件中包含dsplib头文件,如果是在.cpp文件里调用,包含头文件时要用 ...
- Functional Jobs // Hire Functional Programmers In Less Time
Functional Jobs // Hire Functional Programmers In Less Time Hire Functional Programmers Quick Save T ...
- OCP读书笔记(7) - 使用RMAN执行恢复
7.Using RMAN to Perform Recovery 使用RMAN进行完全恢复system表空间文件丢失的恢复 模拟损坏: SQL> conn /as sysdba; SQL> ...
- python安装依赖
yum install zlib zlib-devel openssl openssl-devel bzip2 bzip2-devel ncurses ncurses-devel readline r ...
- poj-3791-An Easy Game-记忆化搜索
dp[i][j]:还有i个不同样的位置,还能走j步,一共同拥有多少种走法. 非常明显 dp[i][j]=sigm(dp[i-k][j-1]*c[i][k]*c[n-i][m-k]); 用记忆化搜索记忆 ...
- WinCE隐藏显示任务栏,当任务栏隐藏时将其显示,当任务栏显示时将其隐藏(FindWindow,ShowWindow,IsWindowVisible),
HANDLE hWndTaskBar = ::FindWindow(TEXT("HHTaskBar"), NULL); if(::IsWindowVisible(hWndTask ...
- python语言学习6——python基础
Python是一种计算机编程语言. 以#开头的语句是注释,注释是给人看的,可以是任意内容 其他每一行都是一个语句,当语句以冒号:结尾时,缩进的语句视为代码块. Python程序是大小写敏感的,如果写错 ...