参考:http://cs231n.github.io/assignment1/

Q1: k-Nearest Neighbor classifier (30 points)

 import numpy as np
from matplotlib.cbook import todate class KNearestNeighbor:
""" a kNN classifier with L2 distance """ def __init__(self):
pass def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data. Input:
X - A num_train x dimension array where each row is a training point.
y - A vector of length num_train, where y[i] is the label for X[i, :]
"""
self.X_train = X
self.y_train = y def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier. Input:
X - A num_test x dimension array where each row is a test point.
k - The number of nearest neighbors that vote for predicted label
num_loops - Determines which method to use to compute distances
between training points and test points. Output:
y - A vector of length num_test, where y[i] is the predicted label for the
test point X[i, :].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops) return self.predict_labels(dists, k=k) def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Input:
X - An num_test x dimension array where each row is a test point. Output:
dists - A num_test x num_train array where dists[i, j] is the distance
between the ith test point and the jth training point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j] #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:] - self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i,:]), axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
tDot = np.multiply(np.dot(X, self.X_train.T), -2)
t1 = np.sum(np.square(X), axis=1, keepdims=True)
t2 = np.sum(np.square(self.X_train), axis=1)
tDot = np.add(t1, tDot)
tDot = np.add(tDot, t2)
dists = np.sqrt(tDot)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Input:
dists - A num_test x num_train array where dists[i, j] gives the distance
between the ith test point and the jth training point. Output:
y - A vector of length num_test where y[i] is the predicted label for the
ith test point.
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i, :])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
######################################################################### y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred

输出:

Two loop version took 55.817642 seconds
One loop version took 49.692089 seconds
No loop version took 1.267753 seconds

CNN for Visual Recognition (assignment1_Q1)的更多相关文章

  1. CNN for Visual Recognition (01)

    CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...

  2. CNN for Visual Recognition (02)

    图像分类 参考:http://cs231n.github.io/classification/ 图像分类(Image Classification),是给输入图像赋予一个已知类别标签.图像分类是计算机 ...

  3. 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition

    Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...

  4. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  5. 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

    导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...

  6. 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)

    Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...

  7. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...

  8. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  9. 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition

    论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...

随机推荐

  1. [kmp+dp] hdu 4628 Pieces

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4622 Reincarnation Time Limit: 6000/3000 MS (Java/Ot ...

  2. C--控制语句循环例子

    C的三种循环while.for和do  while 先说一下scanf()函数的返回值问题 当scanf("%d,%d",&a,&b);如果用户正确输入了俩个整形变 ...

  3. 在WAMPSERVER下增加多版本的PHP(PHP5.3,PHP5.4,PHP5.5)支持。

    原文:在WAMPSERVER下增加多版本的PHP(PHP5.3,PHP5.4,PHP5.5)支持. WAMPServer可以让开发者在Windows系统下快速搭建WAMP环境,它支持多版本的Apach ...

  4. [Unity3D]Unity3D游戏开发Android内嵌视图Unity查看

    ---------------------------------------------------------------------------------------------------- ...

  5. java中Integer包装类的具体解说(java二进制操作,全部进制转换)

    程序猿都非常懒,你懂的! 今天为大家分享的是Integer这个包装类.在现实开发中,我们往往须要操作Integer,或者各种进制的转换等等.我今天就为大家具体解说一下Integer的使用吧.看代码: ...

  6. Sql Server 存储过程中查询数据无法使用 Union(All)

    原文:Sql Server 存储过程中查询数据无法使用 Union(All) 微软Sql Server数据库中,书写存储过程时,关于查询数据,无法使用Union(All)关联多个查询. 1.先看一段正 ...

  7. Oracle SqlPlus 方向键的方法和解决的退格键失效

    SqlPlus中退格键和方向键的设置 在刚装好的Oracle中,我们使用SqlPlus会发现很的蹩脚,不仅退格键不好用,方向键也不行调出history.以下有几种解决方法. 1.能够使用ctrl+Ba ...

  8. TreeView的绑定

    近期遇到了TreeView的数据库绑定问题,确实是弄了我好几天,特别是多级节点的分步绑定,最開始不分步,发现所有载入页面都卡爆了,真心让人头疼.所以放出来,给须要的朋友看看,以免大家走冤枉路. 1.仅 ...

  9. QT最简单的程序执行过程分析(内含C++基础知识)

    打开QT Creator,新建一个“应用程序-Qt Widgets Application”项目: 输入名称scdc之后点击下一步. 在“构建套件”这个页面中直接点出下一步,然后再输入自己的类名Dat ...

  10. css优先级汇总

    原文:css优先级汇总 我所理解的css优先级:当两个或者多个样式作用于同一个元素时,就会出现css优先级的问题. 多重样式优先级:当内联样式.内部样式和外部样式作用于同一个元素时,属于多重样式的范畴 ...