http://poj.org/problem?id=1556

The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6120   Accepted: 2455

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be
from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows. 





4 2 7 8 9 

7 3 4.5 6 7 



The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways
in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1. 

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no
blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


開始的时候真的是二逼了,

1、推断相交的函数写错了,我竟然推断的是是不是跟源点和终点的直线相交。。。二逼啊,,,

2、然后改了之后还wa,由于推断里少了个!,,,,没取反,,,

3、极限的点,比方每道墙的最上沿和最下沿,这两个点不可达,就是说从源头到终点不能经过这两个点,開始的时候没排除,尽管那样的话也能AC,还是题目数据太弱了啊

我自己写的推断直线相交的模板:

/*==========================================================*\
|| 推断点在直线上或直线相交
1、函数值为0,表示在直线上;
2、test(a,b,t1)*test(a,b,t2)<0表示直线ab和直线t1t2相交
\*==========================================================*/
double test(Point a,Point b, Point t)
{
return (b.y-a.y)*(t.x-b.x)-(b.x-a.x)*(t.y-b.y);
}

思路还是比較顺的,就是最短路+推断直线相交

贴代码:

#include<cstdio>
#include<cstring>
#include <string>
#include <map>
#include <iostream>
#include <cmath>
using namespace std;
#define INF 10000
const double eps=1e-6; const int MAXN = 1011;
#define Max(a,b) (a)>(b)?(a):(b)
int cntp;
int wn;
struct Point{
Point(double x=0,double y=0):x(x),y(y){}
double x,y;
int id;
}p[MAXN];
struct Wall{
double s1,e1;
double s2,e2;
double s3;
}w[20];//=0~~=wn
double e[MAXN][MAXN],dist[MAXN]; double dis(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void init()
{
cntp=1;
for(int i=0;i<=MAXN;i++)
for(int j=0;j<=MAXN;j++)
{
if(i == j)e[i][j]=0;
else e[i][j]=INF;
}
p[0].x=0,p[0].y=5,p[0].id=0;
for(int i=0;i<=MAXN;i++)dist[i]=INF;
} double test(Point a,Point b, Point t)
{
return (b.y-a.y)*(t.x-b.x)-(b.x-a.x)*(t.y-b.y);
} bool Judge(Point a, Point b)
{
if(a.id>b.id)
{
Point t=a;
a=b;
b=t;
}
//int flag=1;
if(a.id>0)
if(a.y -0.0 <=eps||10.0-a.y <=eps)
return 0;
if(b.id<cntp-1)
if(b.y-0.0<=eps || 10.0-b.y<=eps)
return 0; for(int i=a.id+1;i<b.id;i++)
{
Point p1(w[i].s1,w[i].e1),p2(w[i].s1,w[i].s2),p3(w[i].s1,w[i].e2),p4(w[i].s1,w[i].s3); if(!(
test(a,b,p1)*test(a,b,p2)<0 ||
test(a,b,p3)*test(a,b,p4)<0)
)return 0;
}
/*for(int i=a.id+1;i<b.id;i++)
{
if(!(
(w[i].e1<5.0&&w[i].s2>5.0)
|| (w[i].e2<5.0&&w[i].s3>5.0)
)
)return 0;
}*/
return 1;
} void Build()
{
for(int i=0;i<cntp;i++)
{
for(int j=i+1;j<cntp;j++)
{
//if(i == j)continue;
if(p[i].id == p[j].id)continue; if(Judge(p[i],p[j]))
{
e[i][j]=min(e[i][j],dis(p[i],p[j]));
}
}
}
} void Bellman(int v0)
{
int n=cntp;
for(int i=0;i<cntp;i++)
{
dist[i]=e[v0][i];
//if(i!=v0 && dist[i]<INF)
}
for(int k=2;k<n;k++)
{
for(int u=0;u<n;u++)
{
if(u!=v0)
{
for(int j=0;j<n;j++)
{
if(e[j][u]!=INF && dist[j]+e[j][u]<dist[u])
{
dist[u]=dist[j]+e[j][u];
}
}
}
}
}
} int main()
{
// freopen("poj1556.txt","r",stdin);
while(~scanf("%d",&wn) && ~wn)
{
init();
for(int i=1;i<=wn;i++)
{
scanf("%lf%lf%lf%lf%lf",&w[i].s1,&w[i].e1,&w[i].s2,&w[i].e2,&w[i].s3);
p[cntp].id=p[cntp+1].id=p[cntp+2].id=p[cntp+3].id=p[cntp+4].id=p[cntp+5].id=i;
p[cntp].x=p[cntp+1].x=p[cntp+2].x=p[cntp+3].x=p[cntp+4].x=p[cntp+5].x=w[i].s1;
p[cntp].y=0.0,p[cntp+1].y=w[i].e1,p[cntp+2].y=w[i].s2,p[cntp+3].y=w[i].e2,p[cntp+4].y=w[i].s3,p[cntp+5].y=10.0;
////////////////
//e[cntp+1][cntp+2]=w[i].s2-w[i].e1;
// e[cntp+3][cntp+4]=w[i].s3-w[i].e2;
cntp+=6;
}
p[cntp].x=10.0,p[cntp].y=5.0,p[cntp].id=++wn;
cntp++;
//if()
Build();
Bellman(0);
printf("%.2lf\n",dist[cntp-1]);
///////////////////
// for(int i=0;i<cntp;i++)
// printf("%d %lf\n",i,dist[i]);
}
return 0;
}

poj 1556 zoj1721 BellmanFord 最短路+推断直线相交的更多相关文章

  1. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  3. 最短路+线段交 POJ 1556 好题

    // 最短路+线段交 POJ 1556 好题 // 题意:从(0,5)到(10,5)的最短距离,中间有n堵墙,每堵上有两扇门可以通过 // 思路:先存图.直接n^2来暴力,不好写.分成三部分,起点 终 ...

  4. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  5. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  6. 直线相交 POJ 1269

    // 直线相交 POJ 1269 // #include <bits/stdc++.h> #include <iostream> #include <cstdio> ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  9. POJ 1269 Intersecing Lines (直线相交)

    题目: Description We all know that a pair of distinct points on a plane defines a line and that a pair ...

随机推荐

  1. CentOS在安装配置 Ngnix_tomcat_PHP_Mysql

    安装Nginx yum install nginx 假设显示找不到 nginx包,新建一个文件/etc/yum.repos.d/nginx.repo,内容: [nginx] name=nginx re ...

  2. 静态常量(static final)在class文件里是如何的呢?

    近期写项目遇到一个问题,来回折腾了几次,最终探究清楚了.不废话.上样例. 背景:由于项目小,没有使用配置文件,全部静态常量都放在Config.java里面了 public class Config { ...

  3. linux内存操作--ioremap和mmap学习笔记

    最近做一些相关的视频输出,对于保留framebuffer内存使用情况不是很清楚,现在找了一些资料整理出,准备使用.if (希望看到使用)  goto   用法: 对于一个系统来讲,会有非常多的外设,那 ...

  4. TCP与UDP的侵略性

    HTTP必须执行在TCP上吗?SSL必须执行在TCP上吗?...实际上HTTP并没有规定一定要执行在TCP上,甚至FTP也不一定要执行在TCP上!HTTP或者FTP仅仅是说底层信道要保证数据的按序传输 ...

  5. 摆弄【Nhibernate 协会制图--导乐陪伴分娩】

    现有两个实体,Dog和 Master,映射到数据库表中如上图所看到的.一个Dog仅仅同意相应一个Master,但一个Master能够有多个Dog.我们在查询Dog的时候.往往还须要知道其主人Maste ...

  6. javascript事件和事件处理

    于js期间事件处理被分成三个步骤: 1.发生事件 2.启动事件处理程序 3.事件处理程序做出反应 事件处理程序的调用 1.在javascript中 在javascript中调用事件处理程序,首先要获得 ...

  7. Nio学习4——EchoServer在IO,NIO,NIO.2中的实现

    堵塞IO实现: public class PlainEchoServer { public void serve(int port) throws IOException { final Server ...

  8. rails 4.0.2 + mongoid 对mongodb进行增删改查

    新建项目 rails new mongoid_app --skip-active-record --skip-test-unit --skip-bundle create create README. ...

  9. 第一次QQ群视频教育有感

    标题:第一次QQ群视频教育有感 作者:丁又专, 时间:2014.08.16     教育的目的:启示学生心智,发现个人优势,激发探索欲望.     今天早上看到 中国大学MOOC<文献管理与信息 ...

  10. POSIX 螺纹具体解释(1-概要)

    线程是有趣的 线程类似于进程.如同进程,线程由内核按时间分片进行管理.在单处理器系统中,内核使用时间分片来模拟线程的并发运行.这样的方式和进程的同样. 而在多处理器系统中,如同多个进程.线程实际上一样 ...