http://poj.org/problem?id=1556

The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6120   Accepted: 2455

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be
from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows. 





4 2 7 8 9 

7 3 4.5 6 7 



The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways
in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1. 

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no
blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source


開始的时候真的是二逼了,

1、推断相交的函数写错了,我竟然推断的是是不是跟源点和终点的直线相交。。。二逼啊,,,

2、然后改了之后还wa,由于推断里少了个!,,,,没取反,,,

3、极限的点,比方每道墙的最上沿和最下沿,这两个点不可达,就是说从源头到终点不能经过这两个点,開始的时候没排除,尽管那样的话也能AC,还是题目数据太弱了啊

我自己写的推断直线相交的模板:

/*==========================================================*\
|| 推断点在直线上或直线相交
1、函数值为0,表示在直线上;
2、test(a,b,t1)*test(a,b,t2)<0表示直线ab和直线t1t2相交
\*==========================================================*/
double test(Point a,Point b, Point t)
{
return (b.y-a.y)*(t.x-b.x)-(b.x-a.x)*(t.y-b.y);
}

思路还是比較顺的,就是最短路+推断直线相交

贴代码:

#include<cstdio>
#include<cstring>
#include <string>
#include <map>
#include <iostream>
#include <cmath>
using namespace std;
#define INF 10000
const double eps=1e-6; const int MAXN = 1011;
#define Max(a,b) (a)>(b)?(a):(b)
int cntp;
int wn;
struct Point{
Point(double x=0,double y=0):x(x),y(y){}
double x,y;
int id;
}p[MAXN];
struct Wall{
double s1,e1;
double s2,e2;
double s3;
}w[20];//=0~~=wn
double e[MAXN][MAXN],dist[MAXN]; double dis(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void init()
{
cntp=1;
for(int i=0;i<=MAXN;i++)
for(int j=0;j<=MAXN;j++)
{
if(i == j)e[i][j]=0;
else e[i][j]=INF;
}
p[0].x=0,p[0].y=5,p[0].id=0;
for(int i=0;i<=MAXN;i++)dist[i]=INF;
} double test(Point a,Point b, Point t)
{
return (b.y-a.y)*(t.x-b.x)-(b.x-a.x)*(t.y-b.y);
} bool Judge(Point a, Point b)
{
if(a.id>b.id)
{
Point t=a;
a=b;
b=t;
}
//int flag=1;
if(a.id>0)
if(a.y -0.0 <=eps||10.0-a.y <=eps)
return 0;
if(b.id<cntp-1)
if(b.y-0.0<=eps || 10.0-b.y<=eps)
return 0; for(int i=a.id+1;i<b.id;i++)
{
Point p1(w[i].s1,w[i].e1),p2(w[i].s1,w[i].s2),p3(w[i].s1,w[i].e2),p4(w[i].s1,w[i].s3); if(!(
test(a,b,p1)*test(a,b,p2)<0 ||
test(a,b,p3)*test(a,b,p4)<0)
)return 0;
}
/*for(int i=a.id+1;i<b.id;i++)
{
if(!(
(w[i].e1<5.0&&w[i].s2>5.0)
|| (w[i].e2<5.0&&w[i].s3>5.0)
)
)return 0;
}*/
return 1;
} void Build()
{
for(int i=0;i<cntp;i++)
{
for(int j=i+1;j<cntp;j++)
{
//if(i == j)continue;
if(p[i].id == p[j].id)continue; if(Judge(p[i],p[j]))
{
e[i][j]=min(e[i][j],dis(p[i],p[j]));
}
}
}
} void Bellman(int v0)
{
int n=cntp;
for(int i=0;i<cntp;i++)
{
dist[i]=e[v0][i];
//if(i!=v0 && dist[i]<INF)
}
for(int k=2;k<n;k++)
{
for(int u=0;u<n;u++)
{
if(u!=v0)
{
for(int j=0;j<n;j++)
{
if(e[j][u]!=INF && dist[j]+e[j][u]<dist[u])
{
dist[u]=dist[j]+e[j][u];
}
}
}
}
}
} int main()
{
// freopen("poj1556.txt","r",stdin);
while(~scanf("%d",&wn) && ~wn)
{
init();
for(int i=1;i<=wn;i++)
{
scanf("%lf%lf%lf%lf%lf",&w[i].s1,&w[i].e1,&w[i].s2,&w[i].e2,&w[i].s3);
p[cntp].id=p[cntp+1].id=p[cntp+2].id=p[cntp+3].id=p[cntp+4].id=p[cntp+5].id=i;
p[cntp].x=p[cntp+1].x=p[cntp+2].x=p[cntp+3].x=p[cntp+4].x=p[cntp+5].x=w[i].s1;
p[cntp].y=0.0,p[cntp+1].y=w[i].e1,p[cntp+2].y=w[i].s2,p[cntp+3].y=w[i].e2,p[cntp+4].y=w[i].s3,p[cntp+5].y=10.0;
////////////////
//e[cntp+1][cntp+2]=w[i].s2-w[i].e1;
// e[cntp+3][cntp+4]=w[i].s3-w[i].e2;
cntp+=6;
}
p[cntp].x=10.0,p[cntp].y=5.0,p[cntp].id=++wn;
cntp++;
//if()
Build();
Bellman(0);
printf("%.2lf\n",dist[cntp-1]);
///////////////////
// for(int i=0;i<cntp;i++)
// printf("%d %lf\n",i,dist[i]);
}
return 0;
}

poj 1556 zoj1721 BellmanFord 最短路+推断直线相交的更多相关文章

  1. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  3. 最短路+线段交 POJ 1556 好题

    // 最短路+线段交 POJ 1556 好题 // 题意:从(0,5)到(10,5)的最短距离,中间有n堵墙,每堵上有两扇门可以通过 // 思路:先存图.直接n^2来暴力,不好写.分成三部分,起点 终 ...

  4. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  5. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  6. 直线相交 POJ 1269

    // 直线相交 POJ 1269 // #include <bits/stdc++.h> #include <iostream> #include <cstdio> ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  9. POJ 1269 Intersecing Lines (直线相交)

    题目: Description We all know that a pair of distinct points on a plane defines a line and that a pair ...

随机推荐

  1. Linux 于 shell 变数 $#,$@,$0,$1,$2 含义解释:

    变量说明: $$ Shell自己PID(ProcessID) $! Shell背景上次执行Process的PID $? 命令的结束代码(返回值) $- 使用Set命令设定的Flag一览 $* 全部參数 ...

  2. nodeJs基础

    Node.js 是一个基于Chrome JavaScript 执行时建立的一个平台, 用来方便地搭建高速的 易于扩展的网络应用· Node.js 借助事件驱动, 非堵塞I/O 模型变得轻量和高效, 很 ...

  3. SWFUpload多文件上传 文件数限制 setStats()

    使用swfupload仿公平图片上传 SWFUpload它是基于flash与javascript的client文件上传组件. handlers.js文件 完毕文件入列队(fileQueued) → 完 ...

  4. bash no such file or directory in ubuntu 1404

    我在我的今天macbook pro retina 里面安装的虚拟机ubuntu 1404. 当我试图执行cadence ncverilog时间.ubuntu终端错误"bash no such ...

  5. EF操作sqlite数据库时的项目兼容性问题

    问题:vs2015打不开vs2010建的操作sqlite的实体数据模型edmx文件 原因: 当前电脑必须先安装:驱动库及sqlite的vs拓展 正常情况下安装驱动和拓展后,vs2015就应该可以正常打 ...

  6. Android Studio中导入Android项目StepbyStep

    想把在eclipse的项目导入Android studio,有两种方法,但是我喜欢的是不改变项目文件结构的方法,因为这样可以兼容eclipse. 第一步: 导入的项目不能运行,需要配置运行环境.And ...

  7. jsRender模板引擎

    jsRender模板引擎 上一篇最后提到了模板,并尝试自己编写一个最简单版本:有些朋友可能用过 jqtmpl,这是一个基于jquery的模板引擎,不过它已经不再更新了,而且据说渲染速度比较慢.这里介绍 ...

  8. MsSqlServer 语句

    --假设 成绩>100 优 --假设成绩>90 良 select * from TblScore select 英语成绩= (case  when tEnglish>90  then ...

  9. Notification使用以及PendingIntent.getActivity() (转)

    public void sendNotification(Context ctx,String message) { //get the notification manager String ns ...

  10. Flux demo

    Flux demo Introduction flux应用架构如下图所示,本文并不是讲述怎么立即做一个酷炫的应用,而是讲述如何依照这种框架,来进行代码的组织.我们先把这个流程转述为文字:抛开与webA ...